Eigenfunctions of structures described by the ``shallow water'' model in a~plane
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 17-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a new method for solving the “shallow water” equations. We show that from the equations of the “shallow water” model one obtains nonlinear Liouville type equations, Helmholtz equations, etc. This allows one to construct eigenfunctions of various structures that appear in the flow in the two-dimensional case. We obtain exact and asymptotic solutions in an elliptic domain with singularities.
@article{FPM_2006_12_6_a1,
     author = {K. A. Volosov},
     title = {Eigenfunctions of structures described by the ``shallow water'' model in a~plane},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {17--32},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a1/}
}
TY  - JOUR
AU  - K. A. Volosov
TI  - Eigenfunctions of structures described by the ``shallow water'' model in a~plane
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 17
EP  - 32
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a1/
LA  - ru
ID  - FPM_2006_12_6_a1
ER  - 
%0 Journal Article
%A K. A. Volosov
%T Eigenfunctions of structures described by the ``shallow water'' model in a~plane
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 17-32
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a1/
%G ru
%F FPM_2006_12_6_a1
K. A. Volosov. Eigenfunctions of structures described by the ``shallow water'' model in a~plane. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 17-32. http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a1/

[1] Akulenko L. D., Nesterov S. V., “Sobstvennye znacheniya ellipticheskoi membrany”, Izv. RAN. MTT, 2000, no. 1, 191–202

[2] Aristov C. N., Pukhnachëv V. V., “Ob uravneniyakh vraschatelno-simmetrichnogo dvizheniya vyazkoi neszhimaemoi zhidkosti”, Dokl. RAN, 394:5 (2004), 611–614 | MR

[3] Bulatov V. V., Vladimirov Yu. V., Danilov V. G., Dobrokhotov S. Yu., “Primer vychisleniya “glaza” taifuna na osnove gipotezy V. P. Maslova”, DAN, 338 (1994), 102–105 | MR | Zbl

[4] Volosov K. A., Matematicheskie voprosy teorii nelineinykh protsessov perenosa, Dis. kand. fiz.-mat. nauk, M., 1982

[5] Volosov K. A., “Ob odnom svoistve anzatsa metoda Khiroty dlya kvazilineinykh parabolicheskikh uravnenii”, Mat. zametki, 71:3 (2002), 373–389 | MR | Zbl

[6] Danilov V. G., Maslov V. P., Shelkovich V. M., “Algebry osobennostei obobschënnykh reshenii strogo giperbolicheskikh sistem kvazilineinykh uravnenii pervogo poryadka”, Teor. i matem. fiz., 114 (1998), 3–55 | MR | Zbl

[7] Danilov V. G., Omelyanov G. A., Rozenkop D. L., Dinamika tochechnoi slaboi osobennosti dlya uravnenii melkoi vody na sfere, Konfidentsialnoe soobschenie

[8] Zaitsev V. F., Polyanin A. D., Spravochnik po differentsialnym uravneniyam s chastnymi proizvodnymi, Mezhdunarodnaya programma obrazovaniya, M., 1996

[9] Maslov V. P., “Tri algebry, otvechayuschie negladkim resheniyam sistem kvazilineinykh giperbolicheskikh uravnenii”, Uspekhi mat. nauk, 35:2 (1980), 252–253

[10] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M, 1989 | MR

[11] Pukhnachëv V. V., “Preobrazovanie ekvivalentnosti i skrytaya simmetriya evolyutsionnykh uravnenii”, DAN SSSR, 294:3 (1987), 555–558 | MR | Zbl

[12] Chatelon F. J., Orenga P., “On a non-homogeneous shallow-water problem”, RAIRO, Modélisation Math. Anal. Numér., 31:1 (1997), 27–55 | MR | Zbl

[13] Danilov V. G., Maslov V. P., Volosov K. A., Mathematical Modelling of Heat and Mass Transfer Processes, Kluwer Academic, Dordrecht, 1995 | MR | Zbl

[14] Dobrokhotov S. Yu., “Hugoniót–Maslov chains for solitary vortices of the shallow water equations. I, II”, Russ. J. Math. Phys., 6:2 (1999), 137–173 ; 6:3, 282–313 | MR | Zbl | MR | Zbl

[15] Volosov K. A., Invariant properties of the ansatz of the Hirota method for quasilinear parabolic equations, , 2001 arXiv: math.PH/0103014 | MR

[16] Volosov K. A., “Tools for mathematical modeling”, The Third Int. Conf. St. Petersburg, 2001, 169–171 | MR