Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_6_a1, author = {K. A. Volosov}, title = {Eigenfunctions of structures described by the ``shallow water'' model in a~plane}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {17--32}, publisher = {mathdoc}, volume = {12}, number = {6}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a1/} }
TY - JOUR AU - K. A. Volosov TI - Eigenfunctions of structures described by the ``shallow water'' model in a~plane JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 17 EP - 32 VL - 12 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a1/ LA - ru ID - FPM_2006_12_6_a1 ER -
K. A. Volosov. Eigenfunctions of structures described by the ``shallow water'' model in a~plane. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 17-32. http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a1/
[1] Akulenko L. D., Nesterov S. V., “Sobstvennye znacheniya ellipticheskoi membrany”, Izv. RAN. MTT, 2000, no. 1, 191–202
[2] Aristov C. N., Pukhnachëv V. V., “Ob uravneniyakh vraschatelno-simmetrichnogo dvizheniya vyazkoi neszhimaemoi zhidkosti”, Dokl. RAN, 394:5 (2004), 611–614 | MR
[3] Bulatov V. V., Vladimirov Yu. V., Danilov V. G., Dobrokhotov S. Yu., “Primer vychisleniya “glaza” taifuna na osnove gipotezy V. P. Maslova”, DAN, 338 (1994), 102–105 | MR | Zbl
[4] Volosov K. A., Matematicheskie voprosy teorii nelineinykh protsessov perenosa, Dis. kand. fiz.-mat. nauk, M., 1982
[5] Volosov K. A., “Ob odnom svoistve anzatsa metoda Khiroty dlya kvazilineinykh parabolicheskikh uravnenii”, Mat. zametki, 71:3 (2002), 373–389 | MR | Zbl
[6] Danilov V. G., Maslov V. P., Shelkovich V. M., “Algebry osobennostei obobschënnykh reshenii strogo giperbolicheskikh sistem kvazilineinykh uravnenii pervogo poryadka”, Teor. i matem. fiz., 114 (1998), 3–55 | MR | Zbl
[7] Danilov V. G., Omelyanov G. A., Rozenkop D. L., Dinamika tochechnoi slaboi osobennosti dlya uravnenii melkoi vody na sfere, Konfidentsialnoe soobschenie
[8] Zaitsev V. F., Polyanin A. D., Spravochnik po differentsialnym uravneniyam s chastnymi proizvodnymi, Mezhdunarodnaya programma obrazovaniya, M., 1996
[9] Maslov V. P., “Tri algebry, otvechayuschie negladkim resheniyam sistem kvazilineinykh giperbolicheskikh uravnenii”, Uspekhi mat. nauk, 35:2 (1980), 252–253
[10] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M, 1989 | MR
[11] Pukhnachëv V. V., “Preobrazovanie ekvivalentnosti i skrytaya simmetriya evolyutsionnykh uravnenii”, DAN SSSR, 294:3 (1987), 555–558 | MR | Zbl
[12] Chatelon F. J., Orenga P., “On a non-homogeneous shallow-water problem”, RAIRO, Modélisation Math. Anal. Numér., 31:1 (1997), 27–55 | MR | Zbl
[13] Danilov V. G., Maslov V. P., Volosov K. A., Mathematical Modelling of Heat and Mass Transfer Processes, Kluwer Academic, Dordrecht, 1995 | MR | Zbl
[14] Dobrokhotov S. Yu., “Hugoniót–Maslov chains for solitary vortices of the shallow water equations. I, II”, Russ. J. Math. Phys., 6:2 (1999), 137–173 ; 6:3, 282–313 | MR | Zbl | MR | Zbl
[15] Volosov K. A., Invariant properties of the ansatz of the Hirota method for quasilinear parabolic equations, , 2001 arXiv: math.PH/0103014 | MR
[16] Volosov K. A., “Tools for mathematical modeling”, The Third Int. Conf. St. Petersburg, 2001, 169–171 | MR