Weighted Schur class functions and functional model
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 221-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize the class of contractive valued, analytic in the unit disk functions (Schur class) to the case of finitely connected domains with operator valued weights on the boundary. The two fundamental decompositions (the inner-outer factorization and the decomposition into an orthogonal sum of the pure and the unitary parts) are extended to our setting. This generalization allows to use an uniform approach to functional models developed recently in papers of the author and D. Yakubovich. Moreover, it gives an alternative language to handle multiply-valued functions in the multiply-connected case.
@article{FPM_2006_12_5_a16,
     author = {A. S. Tikhonov},
     title = {Weighted {Schur} class functions and functional model},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {221--236},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a16/}
}
TY  - JOUR
AU  - A. S. Tikhonov
TI  - Weighted Schur class functions and functional model
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 221
EP  - 236
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a16/
LA  - ru
ID  - FPM_2006_12_5_a16
ER  - 
%0 Journal Article
%A A. S. Tikhonov
%T Weighted Schur class functions and functional model
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 221-236
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a16/
%G ru
%F FPM_2006_12_5_a16
A. S. Tikhonov. Weighted Schur class functions and functional model. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 221-236. http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a16/

[1] Kapustin V. V., “Kharakteristicheskie funktsii i ikh faktorizatsii”, Zap. nauch. sem. Sankt-Peterburg. otd-niya Mat. in-ta, 247 (1997), 71–78 | Zbl

[2] Naboko S. N., “Spektralnyi analiz nesamosopryazhënnykh operatorov”, DAN SSSR, 232 (1977), 36–39 | MR | Zbl

[3] Tikhonov A. S., “Spektralnye komponenty dlya operatorov so spektrom na krivoi”, Funkts. analiz i ego pril., 37:2 (2003), 90–91 | MR | Zbl

[4] Tikhonov A. S., “Funktsionalnaya model i dvoistvennost spektralnykh komponent dlya operatorov s nepreryvnym spektrom na krivoi”, Algebra i analiz, 14:4 (2002), 158–195 | MR | Zbl

[5] Yakubovich D. V., “Lineino-podobnaya model Sëkefalvi-Nadya–Foyasha v oblasti”, Algebra i analiz, 15:2 (2003), 190–237 | MR | Zbl

[6] Abrahamse M. B., Douglas R. G., “A class of subnormal operators related to multiply connected domains”, Adv. Math., 19 (1976), 106–148 | DOI | MR | Zbl

[7] Biswas A., Foias C., Frazho A. E., “Weighted commutant lifting”, Acta Sci. Math. (Szeged), 65:3–4 (1999), 657–686 | MR | Zbl

[8] Boiko S. S., Dubovoi V. K., “Unitary couplings and regular factorizations of operator functions in $L^\infty$”, Dopov. Nats. Akad. Nauk Ukraïni, 1997, no. 1, 41–44 | MR | Zbl

[9] Bungart L., “On analytic fiber bundles”, Topology, 7 (1968), 55–68 | DOI | MR | Zbl

[10] Duren P. L., Theory of $H^p$ Spaces, Pure Appl. Math., 38, Academic Press, New York, 1970 | MR

[11] Garnett J., Bounded Analytic Functions, Academic Press, London, 1981 | MR | Zbl

[12] Grauert H., “Analytische Fasrungen über holomorph vollstandigen Räumen”, Math. Ann., 135 (1958), 263–273 | DOI | MR | Zbl

[13] Koosis P., Lectures on $H_p$ Spaces, Cambridge Univ. Press, London, 1980 | MR | Zbl

[14] Lax P., Phillips R. S., Scattering Theory, Academic Press, New York, 1967 | MR | Zbl

[15] Nikolski N. K., Operators, Functions, and Systems: An Easy Reading, vol. 1, Hardy, Hankel, and Toeplitz, Amer. Math. Soc., Providence, 2002 | MR

[16] Nikolski N. K., Vasyunin V. I., “Elements of spectral theory in terms of the free functional model”, Part I. Basic constructions, Holomorphic Spaces, eds. Sh. Axler, J. McCarthy, D. Sarason, 1998 (MSRI Publications; Vol. 33), 211–302 | MR | Zbl

[17] Sarason D., The $H^p$ Spaces of an Annulus, Mem. Amer. Math. Soc.; Vol. 56, Amer. Math. Soc., Providence, 1956 | MR

[18] Sarason D., “On spectral sets having connected complement”, Acta Sci. Math., 26 (1965), 3–4 | MR

[19] Szökefalvi-Nagy B., Foiaş C., Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970 | MR

[20] Tikhonov A. S., “Inner-outer factorization of $J$-contractive valued functions”, Operator Theory, 118, Adv. Appl., 2000, 405–415 | MR | Zbl

[21] Verduyn Lunel S. M., Yakubovich D. V., “A functional model approach to linear neutral functional differential equations”, Integral Equations Operator Theory, 27 (1997), 347–378 | DOI | MR | Zbl

[22] Voichick M., Zalcman L., “Inner and outer functions of Riemann surfaces”, Proc. Amer. Math. Soc., 16, 1963, 1200–1204 | MR