Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_5_a16, author = {A. S. Tikhonov}, title = {Weighted {Schur} class functions and functional model}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {221--236}, publisher = {mathdoc}, volume = {12}, number = {5}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a16/} }
A. S. Tikhonov. Weighted Schur class functions and functional model. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 221-236. http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a16/
[1] Kapustin V. V., “Kharakteristicheskie funktsii i ikh faktorizatsii”, Zap. nauch. sem. Sankt-Peterburg. otd-niya Mat. in-ta, 247 (1997), 71–78 | Zbl
[2] Naboko S. N., “Spektralnyi analiz nesamosopryazhënnykh operatorov”, DAN SSSR, 232 (1977), 36–39 | MR | Zbl
[3] Tikhonov A. S., “Spektralnye komponenty dlya operatorov so spektrom na krivoi”, Funkts. analiz i ego pril., 37:2 (2003), 90–91 | MR | Zbl
[4] Tikhonov A. S., “Funktsionalnaya model i dvoistvennost spektralnykh komponent dlya operatorov s nepreryvnym spektrom na krivoi”, Algebra i analiz, 14:4 (2002), 158–195 | MR | Zbl
[5] Yakubovich D. V., “Lineino-podobnaya model Sëkefalvi-Nadya–Foyasha v oblasti”, Algebra i analiz, 15:2 (2003), 190–237 | MR | Zbl
[6] Abrahamse M. B., Douglas R. G., “A class of subnormal operators related to multiply connected domains”, Adv. Math., 19 (1976), 106–148 | DOI | MR | Zbl
[7] Biswas A., Foias C., Frazho A. E., “Weighted commutant lifting”, Acta Sci. Math. (Szeged), 65:3–4 (1999), 657–686 | MR | Zbl
[8] Boiko S. S., Dubovoi V. K., “Unitary couplings and regular factorizations of operator functions in $L^\infty$”, Dopov. Nats. Akad. Nauk Ukraïni, 1997, no. 1, 41–44 | MR | Zbl
[9] Bungart L., “On analytic fiber bundles”, Topology, 7 (1968), 55–68 | DOI | MR | Zbl
[10] Duren P. L., Theory of $H^p$ Spaces, Pure Appl. Math., 38, Academic Press, New York, 1970 | MR
[11] Garnett J., Bounded Analytic Functions, Academic Press, London, 1981 | MR | Zbl
[12] Grauert H., “Analytische Fasrungen über holomorph vollstandigen Räumen”, Math. Ann., 135 (1958), 263–273 | DOI | MR | Zbl
[13] Koosis P., Lectures on $H_p$ Spaces, Cambridge Univ. Press, London, 1980 | MR | Zbl
[14] Lax P., Phillips R. S., Scattering Theory, Academic Press, New York, 1967 | MR | Zbl
[15] Nikolski N. K., Operators, Functions, and Systems: An Easy Reading, vol. 1, Hardy, Hankel, and Toeplitz, Amer. Math. Soc., Providence, 2002 | MR
[16] Nikolski N. K., Vasyunin V. I., “Elements of spectral theory in terms of the free functional model”, Part I. Basic constructions, Holomorphic Spaces, eds. Sh. Axler, J. McCarthy, D. Sarason, 1998 (MSRI Publications; Vol. 33), 211–302 | MR | Zbl
[17] Sarason D., The $H^p$ Spaces of an Annulus, Mem. Amer. Math. Soc.; Vol. 56, Amer. Math. Soc., Providence, 1956 | MR
[18] Sarason D., “On spectral sets having connected complement”, Acta Sci. Math., 26 (1965), 3–4 | MR
[19] Szökefalvi-Nagy B., Foiaş C., Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970 | MR
[20] Tikhonov A. S., “Inner-outer factorization of $J$-contractive valued functions”, Operator Theory, 118, Adv. Appl., 2000, 405–415 | MR | Zbl
[21] Verduyn Lunel S. M., Yakubovich D. V., “A functional model approach to linear neutral functional differential equations”, Integral Equations Operator Theory, 27 (1997), 347–378 | DOI | MR | Zbl
[22] Voichick M., Zalcman L., “Inner and outer functions of Riemann surfaces”, Proc. Amer. Math. Soc., 16, 1963, 1200–1204 | MR