Periodic solutions of a~quasilinear wave equation with homogeneous boundary conditions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 189-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove the existence of time-periodic weak solutions for the wave equation with homogeneous boundary conditions. This paper deals with the cases where a nonlinear term has a superlinear and sublinear growth.
@article{FPM_2006_12_5_a14,
     author = {I. A. Rudakov},
     title = {Periodic solutions of a~quasilinear wave equation with homogeneous boundary conditions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {189--201},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a14/}
}
TY  - JOUR
AU  - I. A. Rudakov
TI  - Periodic solutions of a~quasilinear wave equation with homogeneous boundary conditions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 189
EP  - 201
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a14/
LA  - ru
ID  - FPM_2006_12_5_a14
ER  - 
%0 Journal Article
%A I. A. Rudakov
%T Periodic solutions of a~quasilinear wave equation with homogeneous boundary conditions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 189-201
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a14/
%G ru
%F FPM_2006_12_5_a14
I. A. Rudakov. Periodic solutions of a~quasilinear wave equation with homogeneous boundary conditions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 189-201. http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a14/

[1] Plotnikov P. I., “Suschestvovanie schetnogo mnozhestva periodicheskikh reshenii zadachi o vynuzhdennykh kolebaniyakh dlya slabo nelineinogo volnovogo uravneniya”, Mat. sb., 136 (178):4 (8) (1988), 546–560 | MR

[2] Rudakov I. A., “Nelineinye kolebaniya struny”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 1984, no. 2, 9–13 | MR | Zbl

[3] Rudakov I. A., “Nelineinye kolebaniya neodnorodnoi struny”, Fundament. i prikl. mat., 8:3 (2002), 877–886 | MR | Zbl

[4] Rudakov I. A., “Periodicheskoe po vremeni reshenie uravneniya vynuzhdennykh kolebanii struny s odnorodnymi granichnymi usloviyami”, Differents. uravn., 39:11 (2003), 1550–1555 | MR | Zbl

[5] Bahri A., Brezis H., “Periodic solution of a nonlinear wave equation”, Proc. Roy. Soc. Edinburgh. Sect. A, 85, 1980, 313–320 | MR | Zbl

[6] Brezis H., Nirenberg H., “Forced vibrations for a nonlinear wave equations”, Comm. Pure Appl. Math., 31:1 (1978), 1–30 | DOI | MR | Zbl

[7] Fadell E. R., Husseini S. Y., Rabinowitz P. H., “Borsuk–Ulam theorems for arbitrary $S^1$ actions and applications”, Trans. Amer. Math. Soc., 274:1 (1982), 345–360 | DOI | MR | Zbl

[8] Feireisl E., “On the existence of multiplicity periodic solutions of a semilinear wave equation with a superlinear forcing term”, Czechoslovak Math. J., 38:1 (1988), 78–87 | MR | Zbl

[9] Feireisl E., “Time periodic solutions to a semilinear beam equation”, Nonlinear Anal., 12 (1988), 279–290 | DOI | MR | Zbl