Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_5_a11, author = {O. O. Obrezkov}, title = {Representation of solution of a~stochastic {Schr\"odinger} equation in the form of {Feynman} integral}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {135--152}, publisher = {mathdoc}, volume = {12}, number = {5}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a11/} }
TY - JOUR AU - O. O. Obrezkov TI - Representation of solution of a~stochastic Schr\"odinger equation in the form of Feynman integral JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 135 EP - 152 VL - 12 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a11/ LA - ru ID - FPM_2006_12_5_a11 ER -
%0 Journal Article %A O. O. Obrezkov %T Representation of solution of a~stochastic Schr\"odinger equation in the form of Feynman integral %J Fundamentalʹnaâ i prikladnaâ matematika %D 2006 %P 135-152 %V 12 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a11/ %G ru %F FPM_2006_12_5_a11
O. O. Obrezkov. Representation of solution of a~stochastic Schr\"odinger equation in the form of Feynman integral. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 135-152. http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a11/
[1] Albeverio S., Smolyanov O..G., “Beskonechnomernye stokhasticheskie uravneniya Shrëdingera–Belavkina”, Uspekhi mat. nauk, 52:4 (1997), 199–201 | MR
[2] elavkin V. P., Smolyanov O. G., “Integral Feinmana po traektoriyam, sootvetstvuyuschii stokhasticheskomu uravneniyu Shrëdingera”, Dokl. AN., 360:5 (1998), 589–593 | MR
[3] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, 2, Mir, M., 1978 | MR
[4] Smolyanov O. G., Trumen A., “Uravneniya Shrëdingera–Belavkina i assotsiirovannye s nimi uravneniya Kolmogorova i Lindblada”, Teor. i matem. fiz., 120:2 (1997), 193–207 | MR
[5] Smolyanov O. G., Shavgulidze E. T., Kontinualnye integraly, Izd-vo Mosk. un-ta, M., 1990 | MR
[6] Albeverio S., Hoegh-Krohn R., Mathematical Theory of Feynman Integrals, Lect. Notes Math., 523, Springer, Berlin, 1976 | MR | Zbl
[7] Albeverio S., Kolokol'tsov V. N., Smolyanov O. G., “Représentation des solution de l'equation de Belavkin pour la mesure quantique par une version rigoureuse de la formule d'intégration fonctionelle de Menski”, C. R. Acad. Sci. Paris, 323:1 (1996), 661–664 | MR | Zbl
[8] Albeverio S., Kolokol'tsov V. N., Smolyanov O. G., “Quantum restrictions for continuous observation of an oscillator”, Rev. Math. Phys., 9:6 (1997), 907–920 | DOI | MR | Zbl
[9] Belavkin V. P., “Nondemolition measurements, nonlinear filtering and dynamic programming of quantum stochastic processes”, Modeling and Control of Systems in Engineering, Quantum Mechanics, Economics, and Biosciences, Lect. Notes Control Inf. Sci.; Vol. 121 (Proc. Bellman Continuum Workshop, Sophia Antipolis, 1988.), Springer, Berlin, 1989, 245–265 | MR
[10] Belavkin V. P., “A new wave equation for a continuous nondemolition measurement”, Phys. Lett. A, 140 (1989), 355–358 | DOI | MR
[11] Chernoff R., Product Formulas, Nonlinear Semigroups and Addition of Unbounded Operators, Mem. Amer. Math. Soc., 140, Amer. Math. Soc., Providence, 1974 | MR | Zbl
[12] Davies E. B., Quantum Theory of Open Systems. London: Academic Press, 1976 | MR
[13] Diosi L., “Continuous quantum measurement and Itô formalism”, Phys. Lett. A, 129 (1988), 419–423 | DOI | MR
[14] Exner P., Open Quantum Systems and Feynman Integrals, Dubna, 1985 | MR
[15] Feynman R. P., “Space-time approach to nonrelativistic quantum mechanics”, Rev. Modern Phys., 20 (1948), 367–387 | DOI | MR
[16] Feynman R. P., Hibbs A., Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965 | Zbl
[17] Ghirardi G. C., Rimini A., Weber T., “A model for unified quantum description of macroscopic and microscopic systems”, Quantum Probability and Applications. II, Lect. Notes Math., 1136, eds. Accardi L., von Waldenfels W., Springer, Berlin, 1985, 223–232 | MR
[18] Hudson R. L., Parthasarathy K. R., “Quantum Itô's formula and stochastic evolutions”, Comm. Math. Phys., 93 (1984), 301–323 | DOI | MR | Zbl
[19] Ikeda N., Watanabe S., Stochastic Differential Equations and Diffusion Processes., North Holland, Kodansha, 1981 | MR | Zbl
[20] Levy P., Theorie de l' Addition des Variables Aleatoires, Gauthier-Villars, Paris, 1937 | Zbl
[21] McKean H., Stochastic Integrals, Academic Press, New York, 1969 | MR | Zbl
[22] Nelson E., “Feynman integrals and the Schrödinger equation”, J. Math. Phys., 5:3 (1964), 332–343 | DOI | MR | Zbl
[23] Obrezkov O. O., “Stochastic Schrödinger equation with two-dimensional white noise”, Russ. J. Math. Physics, 9:4 (2002), 446–454 | MR | Zbl
[24] Obrezkov O. O., “The proof of the Feynman–Kac formula for heat equation on a compact Riemannian manifold”, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 6, no. 2, 2003, 311–320 | MR | Zbl
[25] Simon B., Functional Integration and Quantum Physics, Academic Press, New York, 1979 | MR
[26] Smolyanov O. G., Tokarev A. G., Truman A., “Hamiltonian Feynman path integrals via the Chernoff formula”, J. Math. Phys., 43:10 (2002), 5161–5171 | DOI | MR | Zbl
[27] Smolyanov O. G., Weizsaecker H. V., Wittich O., “Brownian motion on a manifold as limit of stepwise conditioned standard Brownian motions”, Can. Math. Soc. Conf. Proc., 29, 2000, 589–602 | MR | Zbl
[28] Smolyanov O. G., Weizsaecker H. V., Wittich O., Chernoff's theorem and the construction of semigroups, Preprint, 2004
[29] Trotter H. F., “On the product of semigroups of operators”, Proc. Amer. Math. Soc., 10, 1959, 545–551 | MR | Zbl