Spike-type contrast structures in reaction-diffusion systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 121-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

Stationary internal layers of spike type for multidimensional reaction-diffusion problems were considered. We prove the existence of internal layers of this type, construct their asymptotics and investigate the stability of these stationary solutions. The consideration is based on an extension of singular limit eigenvalue problem method.
@article{FPM_2006_12_5_a10,
     author = {N. N. Nefedov},
     title = {Spike-type contrast structures in reaction-diffusion systems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {121--134},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a10/}
}
TY  - JOUR
AU  - N. N. Nefedov
TI  - Spike-type contrast structures in reaction-diffusion systems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 121
EP  - 134
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a10/
LA  - ru
ID  - FPM_2006_12_5_a10
ER  - 
%0 Journal Article
%A N. N. Nefedov
%T Spike-type contrast structures in reaction-diffusion systems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 121-134
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a10/
%G ru
%F FPM_2006_12_5_a10
N. N. Nefedov. Spike-type contrast structures in reaction-diffusion systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 121-134. http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a10/

[1] Butuzov V. F., Vasileva A. B., “Ob asimptotike resheniya tipa kontrastnoi struktury”, Mat. zametki, 42:6 (1987), 831–841 | MR | Zbl

[2] Nefedov N. N., “Kontrastnye struktury tipa vspleska v nelineinykh singulyarno vozmuschennykh ellipticheskikh uravneniyakh”, Dokl. AN., 327:1 (1992), 16–19 | MR | Zbl

[3] Fife P. C., “Semilinear elliptic boundary value problems with small parameters”, Arch. Rational Mech. Anal., 52 (1973), 205–232 | DOI | MR | Zbl

[4] Nefedov N. N., “On moving spike type internal layer in nonlinear singularly perturbed problems”, J. Math. Anal. Appl., 221 (1998), 1–12 | DOI | MR | Zbl

[5] Nefedov N. N., Sakamoto K., “Multi-dimensional stationary internal layers for spatially inhomogeneous reaction-diffusion equations with balanced nonlinearity”, Hiroshima Math. J., 33:3 (2003), 391–432 | MR | Zbl

[6] Nishiura Y., “Coexistence of infintely many stable solutions to reaction diffusion systems in the singular limit”, Dynamics Reported, 3, 1994, 25–103 | Zbl

[7] Nishiura Y., “Nonlinear Problems”, Iwanami Ser. on Developments of Modern Math., 7, Tokyo, 1998; 1 ; Mathematics for Pattern Formation | MR

[8] Nishiura Y., Fujii H., “Stability of singularly perturbed solutions to reaction diffusion equations”, SIAM J. Math. Anal., 18 (1987), 1726–1770 | DOI | MR | Zbl

[9] Nishiura Y., Mimura M., “Layer oscillations in reaction-diffusion systems”, SIAM J. Appl. Math., 49 (1989), 481–514 | DOI | MR | Zbl

[10] O'Malley R. E., jr., “Phase-plane solutions to some singular perturbation problems”, J. Math. Anal. Appl., 54 (1976), 449–456 | DOI | MR

[11] Sakamoto K., Nefedov N. N., “Geometric variational problems arising in reaction-diffusion systems”, RIMS Kokyuroku, 1210, 2001, 29–43 | MR