Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_5_a10, author = {N. N. Nefedov}, title = {Spike-type contrast structures in reaction-diffusion systems}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {121--134}, publisher = {mathdoc}, volume = {12}, number = {5}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a10/} }
N. N. Nefedov. Spike-type contrast structures in reaction-diffusion systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 121-134. http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a10/
[1] Butuzov V. F., Vasileva A. B., “Ob asimptotike resheniya tipa kontrastnoi struktury”, Mat. zametki, 42:6 (1987), 831–841 | MR | Zbl
[2] Nefedov N. N., “Kontrastnye struktury tipa vspleska v nelineinykh singulyarno vozmuschennykh ellipticheskikh uravneniyakh”, Dokl. AN., 327:1 (1992), 16–19 | MR | Zbl
[3] Fife P. C., “Semilinear elliptic boundary value problems with small parameters”, Arch. Rational Mech. Anal., 52 (1973), 205–232 | DOI | MR | Zbl
[4] Nefedov N. N., “On moving spike type internal layer in nonlinear singularly perturbed problems”, J. Math. Anal. Appl., 221 (1998), 1–12 | DOI | MR | Zbl
[5] Nefedov N. N., Sakamoto K., “Multi-dimensional stationary internal layers for spatially inhomogeneous reaction-diffusion equations with balanced nonlinearity”, Hiroshima Math. J., 33:3 (2003), 391–432 | MR | Zbl
[6] Nishiura Y., “Coexistence of infintely many stable solutions to reaction diffusion systems in the singular limit”, Dynamics Reported, 3, 1994, 25–103 | Zbl
[7] Nishiura Y., “Nonlinear Problems”, Iwanami Ser. on Developments of Modern Math., 7, Tokyo, 1998; 1 ; Mathematics for Pattern Formation | MR
[8] Nishiura Y., Fujii H., “Stability of singularly perturbed solutions to reaction diffusion equations”, SIAM J. Math. Anal., 18 (1987), 1726–1770 | DOI | MR | Zbl
[9] Nishiura Y., Mimura M., “Layer oscillations in reaction-diffusion systems”, SIAM J. Appl. Math., 49 (1989), 481–514 | DOI | MR | Zbl
[10] O'Malley R. E., jr., “Phase-plane solutions to some singular perturbation problems”, J. Math. Anal. Appl., 54 (1976), 449–456 | DOI | MR
[11] Sakamoto K., Nefedov N. N., “Geometric variational problems arising in reaction-diffusion systems”, RIMS Kokyuroku, 1210, 2001, 29–43 | MR