On localization of the spectrum of non-self-adjoint differential operators
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 11-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the problem on the localization of the spectrum of non-self-adjoint differential operators on unbounded domains with power coefficients. For finding the location of spectrum points in the complex plane, we use isospectral deformations of differential operators and the properties of families of closed operators analytic in the Kato sense.
@article{FPM_2006_12_5_a1,
     author = {N. F. Valeev},
     title = {On localization of the spectrum of non-self-adjoint differential operators},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {11--19},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a1/}
}
TY  - JOUR
AU  - N. F. Valeev
TI  - On localization of the spectrum of non-self-adjoint differential operators
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 11
EP  - 19
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a1/
LA  - ru
ID  - FPM_2006_12_5_a1
ER  - 
%0 Journal Article
%A N. F. Valeev
%T On localization of the spectrum of non-self-adjoint differential operators
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 11-19
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a1/
%G ru
%F FPM_2006_12_5_a1
N. F. Valeev. On localization of the spectrum of non-self-adjoint differential operators. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 11-19. http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a1/

[1] Glazman I. M., Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatgiz, M., 1963 | MR

[2] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[3] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[4] Kostyuchenko A. G., “Asimptoticheskoe povedenie spektralnoi funktsii samosopryazhennykh ellipticheskikh operatorov”, Chetvertaya matematicheskaya shkola, Kiev, 42–117 | Zbl

[5] Shkalikov A. A., “Spektralnye portrety operatora Orra–Zommerfelda pri bolshikh chislakh Reinoldsa”, Sovremennaya matematika. Fundamentalnye napravleniya., 3 (2003), 89–112, M. | MR | Zbl

[6] Brown B. M., Mc. Cormack D. K. R., Evans W. D., Plum M., On the spectrum of second order differential operators with complex coefficients, , 2001 arXiv: math.SP/97r247v3 | MR

[7] Davies E. B., Semi-classical state for non-self-adjoint Schrödinger operators, , 1998 arXiv: math.SP/9803129 | MR