@article{FPM_2006_12_5_a1,
author = {N. F. Valeev},
title = {On localization of the spectrum of non-self-adjoint differential operators},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {11--19},
year = {2006},
volume = {12},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a1/}
}
N. F. Valeev. On localization of the spectrum of non-self-adjoint differential operators. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 11-19. http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a1/
[1] Glazman I. M., Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatgiz, M., 1963 | MR
[2] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965
[3] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[4] Kostyuchenko A. G., “Asimptoticheskoe povedenie spektralnoi funktsii samosopryazhennykh ellipticheskikh operatorov”, Chetvertaya matematicheskaya shkola, Kiev, 42–117 | Zbl
[5] Shkalikov A. A., “Spektralnye portrety operatora Orra–Zommerfelda pri bolshikh chislakh Reinoldsa”, Sovremennaya matematika. Fundamentalnye napravleniya., 3 (2003), 89–112, M. | MR | Zbl
[6] Brown B. M., Mc. Cormack D. K. R., Evans W. D., Plum M., On the spectrum of second order differential operators with complex coefficients, , 2001 arXiv: math.SP/97r247v3 | MR
[7] Davies E. B., Semi-classical state for non-self-adjoint Schrödinger operators, , 1998 arXiv: math.SP/9803129 | MR