On uniform estimates for solutions to quasi-linear differential equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

Uniform estimates are obtained for positive solutions with the same domain to the equation $$ y^{(n)}+\sum_{i=0}^{n-1}a_{i}(x)y^{(i)}+p(x)|y|^{k-1}y=0 $$ of even order $n$ with $k>1$ and continuous functions $p(x)>0$ and $a_i(x)$. In the case where $a_{0}(x)\equiv\dots\equiv a_{n-1}(x)\equiv0$, uniform estimates are obtained depending on $p_{*}=\inf p(x)>0$ and not on the function $p(x)$ itself.
@article{FPM_2006_12_5_a0,
     author = {I. V. Astashova},
     title = {On uniform estimates for solutions to quasi-linear differential equations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a0/}
}
TY  - JOUR
AU  - I. V. Astashova
TI  - On uniform estimates for solutions to quasi-linear differential equations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 3
EP  - 9
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a0/
LA  - ru
ID  - FPM_2006_12_5_a0
ER  - 
%0 Journal Article
%A I. V. Astashova
%T On uniform estimates for solutions to quasi-linear differential equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 3-9
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a0/
%G ru
%F FPM_2006_12_5_a0
I. V. Astashova. On uniform estimates for solutions to quasi-linear differential equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 3-9. http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a0/

[1] Astashova I. V., “O kachestvennykh svoistvakh reshenii uravnenii tipa Emdena–Faulera”, Uspekhi mat. nauk, 51:5 (1996), 185

[2] Kondratev V. A., “O kachestvennykh svoistvakh reshenii polulineinykh ellipticheskikh uravnenii”, Tr. seminara im. I. G. Petrovskogo, no. 16, 1991, 186–190

[3] Astashova I. V., “Estimates of solutions to one-dimensional Schredinger equation”, Progress in Analysis. Proc. of the 3rd Int. ISAAC Congress, II, World Sci. Press, 2003, 955–960 | MR