On stabilization of solutions of the Cauchy problem for a~parabolic equation with lower-order coefficients
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 79-97
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, we study the sufficient conditions for the lower-order coefficient of the parabolic equation
$$
\Delta u+c(x,t)u-u_t=0\ \ \text{for}\ \ x\in\mathbb R^N,\ \ t>0,
$$
under which its solution satisfying the initial condition
$$
u|_{t=0}=u_0(x)\ \ \text{for}\ \ x\in \mathbb R^N,
$$
stabilizes to zero, i.e., there exists the limit
$$
\lim_{t\to\infty}{u(x,t)}=0,
$$
uniform in $x$ from every compact set $K$ in $\mathbb R^N$ for any function $u_0(x)$ belonging to a certain uniqueness class of the problem considered and growing not rapidly than $e^{a|x|^b}$ with $a>0$ and $b>0$ at infinity.
@article{FPM_2006_12_4_a5,
author = {V. N. Denisov},
title = {On stabilization of solutions of the {Cauchy} problem for a~parabolic equation with lower-order coefficients},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {79--97},
publisher = {mathdoc},
volume = {12},
number = {4},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a5/}
}
TY - JOUR AU - V. N. Denisov TI - On stabilization of solutions of the Cauchy problem for a~parabolic equation with lower-order coefficients JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 79 EP - 97 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a5/ LA - ru ID - FPM_2006_12_4_a5 ER -
%0 Journal Article %A V. N. Denisov %T On stabilization of solutions of the Cauchy problem for a~parabolic equation with lower-order coefficients %J Fundamentalʹnaâ i prikladnaâ matematika %D 2006 %P 79-97 %V 12 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a5/ %G ru %F FPM_2006_12_4_a5
V. N. Denisov. On stabilization of solutions of the Cauchy problem for a~parabolic equation with lower-order coefficients. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 79-97. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a5/