On stabilization of solutions of the Cauchy problem for a~parabolic equation with lower-order coefficients
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 79-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we study the sufficient conditions for the lower-order coefficient of the parabolic equation $$ \Delta u+c(x,t)u-u_t=0\ \ \text{for}\ \ x\in\mathbb R^N,\ \ t>0, $$ under which its solution satisfying the initial condition $$ u|_{t=0}=u_0(x)\ \ \text{for}\ \ x\in \mathbb R^N, $$ stabilizes to zero, i.e., there exists the limit $$ \lim_{t\to\infty}{u(x,t)}=0, $$ uniform in $x$ from every compact set $K$ in $\mathbb R^N$ for any function $u_0(x)$ belonging to a certain uniqueness class of the problem considered and growing not rapidly than $e^{a|x|^b}$ with $a>0$ and $b>0$ at infinity.
@article{FPM_2006_12_4_a5,
     author = {V. N. Denisov},
     title = {On stabilization of solutions of the {Cauchy} problem for a~parabolic equation with lower-order coefficients},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {79--97},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a5/}
}
TY  - JOUR
AU  - V. N. Denisov
TI  - On stabilization of solutions of the Cauchy problem for a~parabolic equation with lower-order coefficients
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 79
EP  - 97
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a5/
LA  - ru
ID  - FPM_2006_12_4_a5
ER  - 
%0 Journal Article
%A V. N. Denisov
%T On stabilization of solutions of the Cauchy problem for a~parabolic equation with lower-order coefficients
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 79-97
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a5/
%G ru
%F FPM_2006_12_4_a5
V. N. Denisov. On stabilization of solutions of the Cauchy problem for a~parabolic equation with lower-order coefficients. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 79-97. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a5/

[1] Denisov V. N., “O stabilizatsii resheniya zadachi Koshi dlya parabolicheskogo uravneniya s koeffitsientom mladshego poryadka i s rastuschei nachalnoi funktsiei”, Tr. seminara im. I. G. Petrovskogo, no. 23, 2003, 125–148

[2] Denisov V. N., “O stabilizatsii resheniya zadachi Koshi dlya parabolicheskogo uravneniya s mladshim koeffitsientom”, Differents. uravn., 39:4 (2003), 506–515 | MR | Zbl

[3] Zhitomirskii Ya. I., “Klassy edinstvennosti i needinstvennosti resheniya zadachi Koshi dlya uravnenii 2-go poryadka”, Teoriya funktsii i funktsionalnyi analiz i ikh prilozheniya, no. 4, Izd-vo KhGU, 1967, 87–115

[4] Ilin A. M., Kalashnikov A. S., Oleinik O. A., “Lineinye uravneniya vtorogo poryadka parabolicheskogo tipa”, Uspekhi mat. nauk, 17:3 (1962), 3–141 | MR

[5] Ilin V. A., Sadovnichii V. A., Sendov B. Kh., Matematicheskii analiz, 2, Izd-vo Mosk. un-ta, M., 1987

[6] Krein M. G., Rutman M. A., “Lineinye operatory, ostavlyayuschie invariantnym konus v prostranstve Banakha”, Uspekhi mat. nauk, 3:1 (1998), 3–95 | MR

[7] Kurant R., Gilbert D., Metody matematicheskoi fiziki, 2, GITTL, M., L., 1945

[8] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[9] Lidskii V. B., “O spektre ellipticheskogo uravneniya”, Mat. zametki, 7:4 (1970), 495–502 | MR | Zbl

[10] Fedoryuk M. V., Obyknovennye differentsialnye uravneniya, Nauka, M., 1985 | MR

[11] Fridman A., Uravneniya parabolicheskogo tipa, M., 1964

[12] Eidelman S. D., Parabolicheskie sistemy, Nauka, M., 1964 | MR

[13] Aronson D. G., “Non-negative solutions of linear parabolic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22:4 (1968), 607–694 | MR | Zbl

[14] Aronson D. G., Besala P., “Parabolic equations with unbounded coefficients”, J. Differential Equations, 3 (1967), 1–14 | DOI | MR | Zbl

[15] Krzyzanski M., “Une propriété des solutions de l'équations linéaire du type parabolique à coefficients non bornes”, Ann. Pol. Math., 1962, no. 12, 209–211 | MR | Zbl

[16] Murata M., “Non-uniqueness of the positive Cauchy problem for parabolic equations”, J. Differential Equations, 123 (1995), 34–387 | DOI | MR

[17] Murata M., “Non-uniqueness of the positive Dirichlet problem for parabolic equations in cylinder”, J. Funct. Anal., 135 (1996), 456–486 | DOI | MR

[18] Pinchover Y., “On uniqueness and non-uniqueness of the positive Cauchy problem for parabolic equations with unbounded coefficients”, Math. Z., 223 (1996), 569–586 | MR | Zbl