On stabilization of solutions of the Cauchy problem for a~parabolic equation with lower-order coefficients
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 79-97

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we study the sufficient conditions for the lower-order coefficient of the parabolic equation $$ \Delta u+c(x,t)u-u_t=0\ \ \text{for}\ \ x\in\mathbb R^N,\ \ t>0, $$ under which its solution satisfying the initial condition $$ u|_{t=0}=u_0(x)\ \ \text{for}\ \ x\in \mathbb R^N, $$ stabilizes to zero, i.e., there exists the limit $$ \lim_{t\to\infty}{u(x,t)}=0, $$ uniform in $x$ from every compact set $K$ in $\mathbb R^N$ for any function $u_0(x)$ belonging to a certain uniqueness class of the problem considered and growing not rapidly than $e^{a|x|^b}$ with $a>0$ and $b>0$ at infinity.
@article{FPM_2006_12_4_a5,
     author = {V. N. Denisov},
     title = {On stabilization of solutions of the {Cauchy} problem for a~parabolic equation with lower-order coefficients},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {79--97},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a5/}
}
TY  - JOUR
AU  - V. N. Denisov
TI  - On stabilization of solutions of the Cauchy problem for a~parabolic equation with lower-order coefficients
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 79
EP  - 97
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a5/
LA  - ru
ID  - FPM_2006_12_4_a5
ER  - 
%0 Journal Article
%A V. N. Denisov
%T On stabilization of solutions of the Cauchy problem for a~parabolic equation with lower-order coefficients
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 79-97
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a5/
%G ru
%F FPM_2006_12_4_a5
V. N. Denisov. On stabilization of solutions of the Cauchy problem for a~parabolic equation with lower-order coefficients. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 79-97. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a5/