Theorem on the density of separatrix connections for polynomial foliations in $\mathbb CP^2$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 53-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that in the space of polynomial foliations of a fixed degree of the complex two-dimensional space, foliations with separatrix connection, i.e., foliations in which any two distinct point have a common separatrix, are dense. The main tool of the proof is the analysis of the monodromy group of the foliation in a neighborhood of the infinitely distant point of the ambient projective space.
@article{FPM_2006_12_4_a3,
     author = {D. S. Volk},
     title = {Theorem on the density of separatrix connections for polynomial foliations in $\mathbb CP^2$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {53--64},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a3/}
}
TY  - JOUR
AU  - D. S. Volk
TI  - Theorem on the density of separatrix connections for polynomial foliations in $\mathbb CP^2$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 53
EP  - 64
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a3/
LA  - ru
ID  - FPM_2006_12_4_a3
ER  - 
%0 Journal Article
%A D. S. Volk
%T Theorem on the density of separatrix connections for polynomial foliations in $\mathbb CP^2$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 53-64
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a3/
%G ru
%F FPM_2006_12_4_a3
D. S. Volk. Theorem on the density of separatrix connections for polynomial foliations in $\mathbb CP^2$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 53-64. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a3/

[1] Ilyashenko Yu., “Topologiya fazovykh portretov analiticheskikh differentsialnykh uravnenii na kompleksnoi proektivnoi ploskosti”, Tr. seminara im. I. G. Petrovskogo, no. 4, 1978, 83–136 | MR

[2] Khudai-Verenov M..G., “Svoistvo reshenii differentsialnogo uravneniya”, Mat. sb., 56 (1962), 301–308 | MR | Zbl

[3] Scherbakov A., “Plotnost orbity psevdogruppy konformnykh otobrazhenii i obobschenie teoremy Khudai-Verenova”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 1982, no. 4, 10–15 | Zbl

[4] Camacho C., Sad P., “Invariant varieties through singularities of holomorphic vector fields”, Ann. Math., 115:3 (1982), 579–595 | DOI | MR | Zbl

[5] Nakai I., “Separatrices for nonsolvable dynamics on $(\mathbb C,0)$”, Ann. Inst. Fourier., 44:2 (1994), 569–599 | MR | Zbl