Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_4_a3, author = {D. S. Volk}, title = {Theorem on the density of separatrix connections for polynomial foliations in $\mathbb CP^2$}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {53--64}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a3/} }
TY - JOUR AU - D. S. Volk TI - Theorem on the density of separatrix connections for polynomial foliations in $\mathbb CP^2$ JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 53 EP - 64 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a3/ LA - ru ID - FPM_2006_12_4_a3 ER -
D. S. Volk. Theorem on the density of separatrix connections for polynomial foliations in $\mathbb CP^2$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 53-64. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a3/
[1] Ilyashenko Yu., “Topologiya fazovykh portretov analiticheskikh differentsialnykh uravnenii na kompleksnoi proektivnoi ploskosti”, Tr. seminara im. I. G. Petrovskogo, no. 4, 1978, 83–136 | MR
[2] Khudai-Verenov M..G., “Svoistvo reshenii differentsialnogo uravneniya”, Mat. sb., 56 (1962), 301–308 | MR | Zbl
[3] Scherbakov A., “Plotnost orbity psevdogruppy konformnykh otobrazhenii i obobschenie teoremy Khudai-Verenova”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 1982, no. 4, 10–15 | Zbl
[4] Camacho C., Sad P., “Invariant varieties through singularities of holomorphic vector fields”, Ann. Math., 115:3 (1982), 579–595 | DOI | MR | Zbl
[5] Nakai I., “Separatrices for nonsolvable dynamics on $(\mathbb C,0)$”, Ann. Inst. Fourier., 44:2 (1994), 569–599 | MR | Zbl