Theorem on the density of separatrix connections for polynomial foliations in $\mathbb CP^2$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 53-64
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove that in the space of polynomial foliations of a fixed degree of the complex two-dimensional space, foliations with separatrix connection, i.e., foliations in which any two distinct point have a common separatrix, are dense. The main tool of the proof is the analysis of the monodromy group of the foliation in a neighborhood of the infinitely distant point of the ambient projective space.
@article{FPM_2006_12_4_a3,
author = {D. S. Volk},
title = {Theorem on the density of separatrix connections for polynomial foliations in $\mathbb CP^2$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {53--64},
publisher = {mathdoc},
volume = {12},
number = {4},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a3/}
}
TY - JOUR AU - D. S. Volk TI - Theorem on the density of separatrix connections for polynomial foliations in $\mathbb CP^2$ JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 53 EP - 64 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a3/ LA - ru ID - FPM_2006_12_4_a3 ER -
D. S. Volk. Theorem on the density of separatrix connections for polynomial foliations in $\mathbb CP^2$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 53-64. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a3/