Rational-fractional methods for solving stiff systems of differential equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 203-208
The paper proposes new numerical methods for solving stiff systems of first-order differential equations not resolved with respect to the derivative. These methods are based on rational-fractional approximations of the vector-valued function of solution of the system considered. The authors study the stability of the constructed methods of arbitrary finite accuracy order. The analysis of the results of experimental studies of these methods by test examples of various types confirms their efficiency.
@article{FPM_2006_12_4_a12,
author = {R. V. Slonevskii and R. R. Stolyarchuk},
title = {Rational-fractional methods for solving stiff systems of differential equations},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {203--208},
year = {2006},
volume = {12},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a12/}
}
TY - JOUR AU - R. V. Slonevskii AU - R. R. Stolyarchuk TI - Rational-fractional methods for solving stiff systems of differential equations JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 203 EP - 208 VL - 12 IS - 4 UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a12/ LA - ru ID - FPM_2006_12_4_a12 ER -
R. V. Slonevskii; R. R. Stolyarchuk. Rational-fractional methods for solving stiff systems of differential equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 203-208. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a12/