On the unique solvability of a~family of two-point boundary-value problems for systems of ordinary differential equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 21-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a family of two-point boundary-value problems for systems of ordinary differential equations with functional parameters. This family is the result of the reduction of a boundary-value problem with nonlocal condition for a system of second-order quasilinear hyperbolic equations by introduction of additional functions. Using the parametrization method, we establish necessary and sufficient conditions of the unique solvability of the family of two-point boundary-value problems for a linear system in terms of initial data. We also prove sufficient conditions of the unique solvability of the problem considered and propose an algorithm for its solution.
@article{FPM_2006_12_4_a1,
     author = {A. T. Asanova},
     title = {On the unique solvability of a~family of two-point boundary-value problems for systems of ordinary differential equations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {21--39},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a1/}
}
TY  - JOUR
AU  - A. T. Asanova
TI  - On the unique solvability of a~family of two-point boundary-value problems for systems of ordinary differential equations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 21
EP  - 39
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a1/
LA  - ru
ID  - FPM_2006_12_4_a1
ER  - 
%0 Journal Article
%A A. T. Asanova
%T On the unique solvability of a~family of two-point boundary-value problems for systems of ordinary differential equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 21-39
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a1/
%G ru
%F FPM_2006_12_4_a1
A. T. Asanova. On the unique solvability of a~family of two-point boundary-value problems for systems of ordinary differential equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 21-39. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a1/

[1] Asanova A. T., Dzhumabaev D. S., “Kriterii korrektnoi razreshimosti kraevoi zadachi dlya sistemy giperbolicheskikh uravnenii”, Izv. NAN RK. Ser. fiz.-mat., 2002, no. 3, 20–26 | MR

[2] Asanova A. T., Dzhumabaev D. S., “O korrektnoi razreshimosti nelokalnoi kraevoi zadachi dlya sistem giperbolicheskikh uravnenii”, Dokl. RAN., 391:3 (2003), 295–297 | MR | Zbl

[3] Dzhumabaev D. S., “Priznaki odnoznachnoi razreshimosti lineinoi kraevoi zadachi dlya obyknovennogo differentsialnogo uravneniya”, ZhVM i MF, 29:1 (1989), 50–66 | MR | Zbl

[4] Kiguradze T. I., “O kraevoi zadache dlya kvazilineinykh giperbolicheskikh sistem”, Dokl. RAN, 328:2 (1993), 187–190 | MR

[5] Kiguradze T. I., “O periodicheskikh kraevykh zadachakh dlya lineinykh giperbolicheskikh uravnenii. I”, Differents. uravn., 34:2 (1998), 238–245 | MR | Zbl

[6] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., “Asimptoticheskie metody issledovaniya periodicheskikh reshenii nelineinykh giperbolicheskikh uravnenii”, Tr. MIRAN im. V. A. Steklova, 222, 1998, 7–191 | MR

[7] Mitropolskii Yu. A., Khoma G. P., Gromyak M. I., Asimptoticheskie metody issledovaniya kvazivolnovykh uravnenii giperbolicheskogo tipa, Kiev, 1991 | MR

[8] Ptashnik B. I., Nekorrektnye granichnye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi, Kiev, 1984 | MR | Zbl

[9] Samoilenko A. M., Tkach B. P., Chislenno-analiticheskie metody v teorii periodicheskikh reshenii uravnenii s chastnymi proizvodnymi, Kiev, 1992 | Zbl

[10] Trenogin V. A., Funktsionalnyi analiz, M., 1980 | MR

[11] Aziz A. K., “Periodic solutions of hyperbolic partial differential equations”, Proc. Amer. Math. Soc., 17:3 (1966), 557–566 | DOI | MR | Zbl

[12] Cesari L., “Periodic solutions of hyperbolic partial differential equations”, Proc. Int. Symp. Nonlinear Vibrations, vol. 2 (Kiev, 1961), Izd. Akad. Nauk Ukr. SSR, Kiev, 440–457 | MR

[13] Vejvoda O., Herrmann L., Lovicar V. et al., Partial Differential Equations: Time-Periodic Solutions, Martinus Nijhoff Publ., Hague, 1982 | Zbl