A~characterization of the lattice group of Riemann integrable functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 3, pp. 101-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we give an algebraic characterization of the family of Riemann integrable functions in terms of lattice groups and a complete description of the Riemann extension of the lattice group of all continuous functions. We formulate a uniqueness theorem for the Riemann extension as a regular completion of the lattice group of all continuous functions.
@article{FPM_2006_12_3_a6,
     author = {A. A. Seredinskii},
     title = {A~characterization of the lattice group of {Riemann} integrable functions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {101--140},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a6/}
}
TY  - JOUR
AU  - A. A. Seredinskii
TI  - A~characterization of the lattice group of Riemann integrable functions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 101
EP  - 140
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a6/
LA  - ru
ID  - FPM_2006_12_3_a6
ER  - 
%0 Journal Article
%A A. A. Seredinskii
%T A~characterization of the lattice group of Riemann integrable functions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 101-140
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a6/
%G ru
%F FPM_2006_12_3_a6
A. A. Seredinskii. A~characterization of the lattice group of Riemann integrable functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 3, pp. 101-140. http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a6/

[1] Vulikh B. Z., Vvedenie v teoriyu poluuporyadochennykh prostranstv, Fizmatgiz, M., 1961 | MR

[2] Zakharov V. K., “Opisanie nekotorykh rasshirenii semeistva nepreryvnykh funktsii posredstvom poryadkovykh granits”, DAN, 400:4 (2005), 444–448 | MR

[3] Zakharov V. K., Mikhalev A. V., Seredinskii A. A., “Algebraicheskoe opisanie reshetochnykh grupp nepreryvnykh ogranichennykh funktsii”, Mezhdunarodnaya algebraicheskaya konferentsiya, posvyaschennaya 250-letiyu Moskovskogo universiteta. Tezisy dokladov, Izd-vo mekhaniko-matematicheskogo fakulteta MGU, M., 2004, 54

[4] Zakharov V. K., Seredinskii A. A., “Novaya kharakterizatsiya funktsii, integriruemykh po Rimanu”, Fundament. i prikl. mat., 10:3 (2004), 73–83 | MR | Zbl

[5] Zakharov V. K., Seredinskii A. A., “Description of Riemann itegrable functions by means of cuts of the space of continuous functions”, Mezhdunarodnaya konferentsiya “Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz”, posvyaschennaya stoletiyu akademika S. M. Nikolskogo. Tezisy dokladov (Moskva, 23–29 maya, 2005), Matematicheskii institut im. V. A. Steklova RAN, M., 2005, 370

[6] Nikolskii S. M., Kurs matematicheskogo analiza, 1, 2, Nauka, M., 1991 | MR

[7] Fuks L., Chastichno uporyadochennye algebraicheskie sistemy, Mir, M., 1965 | MR

[8] Lebesgue H., Leçons sur l'intégration et la recherche des fonctions primitives, Gauthier-Villars, Paris, 1904 | Zbl

[9] Semadeni Z., Banach Spaces of Continuous Functiouns., Polish Scientific Publishers, Warszawa, 1971 | MR | Zbl

[10] Vitali G., Sulla integrabilità delle funzioni, Ist. Lombardo Accad. Sci. Lett. Rend. (2), 37, 1904 | Zbl

[11] Zaharov p. K., “Alexandrovian cover and Sierpin'skian extension”, Studia Sci. Math. Hung., 24 (1989), 93–117 | MR | Zbl