Latin squares over Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 3, pp. 65-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, parametric families of Latin squares over Boolean vectors and prime fields constructed earlier are generalized to the case of Abelian groups. Some criteria for realizability of this construction are presented. Some classification results are also given.
@article{FPM_2006_12_3_a3,
     author = {V. A. Nosov and A. E. Pankratiev},
     title = {Latin squares over {Abelian} groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {65--71},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a3/}
}
TY  - JOUR
AU  - V. A. Nosov
AU  - A. E. Pankratiev
TI  - Latin squares over Abelian groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 65
EP  - 71
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a3/
LA  - ru
ID  - FPM_2006_12_3_a3
ER  - 
%0 Journal Article
%A V. A. Nosov
%A A. E. Pankratiev
%T Latin squares over Abelian groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 65-71
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a3/
%G ru
%F FPM_2006_12_3_a3
V. A. Nosov; A. E. Pankratiev. Latin squares over Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 3, pp. 65-71. http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a3/

[1] Nosov V. A., “O postroenii klassov latinskikh kvadratov v bulevoi baze dannykh”, Intellekt. sist., 4:3–4 (1999), 307–320

[2] Nosov V. A., “Postroenie parametricheskogo semeistva latinskikh kvadratov v vektornoi baze dannykh”, Intellekt. sist., 8:1–4 (2004), 517–528

[3] Nosov V. A., Pankratev A. E., “Latinskie kvadraty nad abelevymi gruppami. Matematicheskie metody i prilozheniya”, Trudy XIV matematicheskikh chtenii MGSU (28–31 yanvarya, 2005), M., 2005, 72–76 | MR

[4] Shennon K., “Teoriya svyazi v sekretnykh sistemakh”, Raboty po teorii informatsii i kibernetike, M., 1963, 333–369

[5] Dénes J., Keedwell A., Latin Squares and Their Applications, Budapest, 1974 | MR