Pseudocharacters on anomalous products of locally indicable groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 3, pp. 55-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

The question on the existence of nontrivial pseudocharacters on anomalous products of locally indicable groups is considered. Some generalizations of theorems of R. I. Grigorchuk and V. G. Bardakov on the existence of nontrivial pseudocharacters on free products with the amalgamation subgroup are found. It is proved that they exist on an anomalous product $\langle G,x\mid w=1\rangle$, where $G$ is a locally indicable noncyclic group. We also prove some other propositions on the existence of nontrivial pseudocharacters on anomalous products of groups. Results on the second cohomologies of these products and their nonamenability follow from the propositions on the existence of nontrivial pseudocharacters on these groups.
@article{FPM_2006_12_3_a2,
     author = {D. Z. Kagan},
     title = {Pseudocharacters on anomalous products of locally indicable groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {55--64},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a2/}
}
TY  - JOUR
AU  - D. Z. Kagan
TI  - Pseudocharacters on anomalous products of locally indicable groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 55
EP  - 64
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a2/
LA  - ru
ID  - FPM_2006_12_3_a2
ER  - 
%0 Journal Article
%A D. Z. Kagan
%T Pseudocharacters on anomalous products of locally indicable groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 55-64
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a2/
%G ru
%F FPM_2006_12_3_a2
D. Z. Kagan. Pseudocharacters on anomalous products of locally indicable groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 3, pp. 55-64. http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a2/

[1] Bardakov V. G., “O shirine verbalnykh podgrupp nekotorykh svobodnykh konstruktsii”, Algebra i logika, 36:5 (1997), 494–517 | MR | Zbl

[2] Brodskii S. D., “Uravneniya nad gruppami i gruppy s odnim opredelyayuschim sootnosheniem”, Sib. mat. zhurn., 25:2 (1984), 84–103 | MR | Zbl

[3] Grigorchuk R. I., “Ogranichennye kogomologii gruppovykh konstruktsii”, Mat. zametki, 59:4 (1996), 546–550 | MR | Zbl

[4] Kagan D. Z., “O suschestvovanii netrivialnykh psevdokharakterov na anomalnykh proizvedeniyakh grupp”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 2004, no. 6, 24–28 | MR | Zbl

[5] Klyachko A. A., Gipoteza Kervera–Laudenbakha i kopredstavleniya prostykh grupp, , 2004 arXiv: math.GR/0409146

[6] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980 | MR

[7] Magnus V., Karras A., Soliter D., Kombinatornaya teoriya grupp, Nauka, M., 1974 | MR | Zbl

[8] Faiziev V. A., “Ob ustoichivosti odnogo funktsionalnogo uravneniya na gruppakh”, Uspekhi mat. nauk, 48:1 (1993), 193–194 | MR | Zbl

[9] Shtern A. I., “Kvazipredstavleniya i psevdopredstavleniya”, Funkts. analiz i ego pril., 25:2 (1991), 70–73 | MR | Zbl

[10] Cohen M. M., Rourke C., “The surjectivity problem for one-generator, one-relator extensions of torsion-free groups”, Geom. Topol., 5 (2001), 127–142 | DOI | MR | Zbl

[11] Grigorchuk R. I., “Some results on bounded cohomology”, Combinatorial and Geometric Group Theory. Proceedings of a workshop held at Heriot-Watt University (Edinburgh, GB), London Math. Soc. Lect. Notes Ser., 284, ed. A. J. Duncan, Cambridge Univ. Press, Cambridge, 1993, 111–163 | MR