On $\Sigma$-nilpotent ideals of topological PI-rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 111-118
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that under certain conditions on the topology of a faithful module $M$ over a topological PI-ring $R$, if $M$ has at most countable dual topological Krull dimension, then the closure of the sum of all $\Sigma$-nilpotent ideals of the ring $R$ is a $\Sigma$-nilpotent ideal too, and in the case of a bounded ring $R$ its topological Baer radical is $\Sigma$-nilpotent.
@article{FPM_2006_12_2_a7,
author = {V. T. Markov and V. V. Tenzina},
title = {On $\Sigma$-nilpotent ideals of topological {PI-rings}},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {111--118},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a7/}
}
V. T. Markov; V. V. Tenzina. On $\Sigma$-nilpotent ideals of topological PI-rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 111-118. http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a7/