Combinatorial generators of the multilinear polynomial identities
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 101-110
Voir la notice de l'article provenant de la source Math-Net.Ru
A Gröbner–Shirshov basis (a combinatorial system of generators) is defined in the set of multilinear elements of a T-ideal of the free associative algebra with a countable set of indeterminates. A combinatorial version of the well-known Specht problem about the finite basedness of polynomial identities of an arbitrary associative algebra is formulated. A “combinatorial Spechtness” property of the multilinear product of commutators of degree 2 and the same property for the three-linear commutator are established.
@article{FPM_2006_12_2_a6,
author = {V. N. Latyshev},
title = {Combinatorial generators of the multilinear polynomial identities},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {101--110},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a6/}
}
V. N. Latyshev. Combinatorial generators of the multilinear polynomial identities. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 101-110. http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a6/