Combinatorial generators of the multilinear polynomial identities
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 101-110

Voir la notice de l'article provenant de la source Math-Net.Ru

A Gröbner–Shirshov basis (a combinatorial system of generators) is defined in the set of multilinear elements of a T-ideal of the free associative algebra with a countable set of indeterminates. A combinatorial version of the well-known Specht problem about the finite basedness of polynomial identities of an arbitrary associative algebra is formulated. A “combinatorial Spechtness” property of the multilinear product of commutators of degree 2 and the same property for the three-linear commutator are established.
@article{FPM_2006_12_2_a6,
     author = {V. N. Latyshev},
     title = {Combinatorial generators of the multilinear polynomial identities},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {101--110},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a6/}
}
TY  - JOUR
AU  - V. N. Latyshev
TI  - Combinatorial generators of the multilinear polynomial identities
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 101
EP  - 110
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a6/
LA  - ru
ID  - FPM_2006_12_2_a6
ER  - 
%0 Journal Article
%A V. N. Latyshev
%T Combinatorial generators of the multilinear polynomial identities
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 101-110
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a6/
%G ru
%F FPM_2006_12_2_a6
V. N. Latyshev. Combinatorial generators of the multilinear polynomial identities. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 101-110. http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a6/