The Jacobson radical of the Laurent series ring
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 209-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a large class of rings $A$ including all rings with right Krull dimension, it is proved that for every automorphism $\varphi$ of the ring $A$, the Jacobson radical of the skew Laurent series ring $A((x,\varphi))$ is nilpotent and coincides with $N((x,\varphi))$, where $N$ is the prime radical of the ring $A$. If $A/N$ is a ring of bounded index, then the Jacobson radical of the Laurent series ring $A((x))$ coincides with $N((x))$.
@article{FPM_2006_12_2_a14,
     author = {A. A. Tuganbaev},
     title = {The {Jacobson} radical of the {Laurent} series ring},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {209--215},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a14/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - The Jacobson radical of the Laurent series ring
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 209
EP  - 215
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a14/
LA  - ru
ID  - FPM_2006_12_2_a14
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T The Jacobson radical of the Laurent series ring
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 209-215
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a14/
%G ru
%F FPM_2006_12_2_a14
A. A. Tuganbaev. The Jacobson radical of the Laurent series ring. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 209-215. http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a14/

[1] Andrunakievich V. A., Ryabukhin Yu. M., Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979 | MR

[2] Sonin K. I., “Regulyarnye koltsa kosykh ryadov Lorana”, Fundam. i prikl. mat., 1:2 (1995), 565–568 | MR | Zbl

[3] Sonin K. I., “Biregulyarnye koltsa ryadov Lorana”, Vestn. Mosk. un- ta. Ser. 1, Matematika, mekhanika, 1997, no. 4, 22–24 | MR

[4] Tuganbaev D. A., “Polulokalnye distributivnye koltsa kosykh ryadov Lorana”, Fundam. i prikl. mat., 6:3 (2000), 913–921 | MR | Zbl

[5] Feis K., Algebra: koltsa, moduli i kategorii., 1, Mir, M., 1977

[6] Gordon R., Robson J. C., “Krull dimension”, Mem. Amer. Math. Soc., 133 (1973), 1–78 | MR

[7] Tuganbaev A. A., Rings Close to Regular, Kluwer Academic, Dordrecht, 2002 | MR | Zbl

[8] Tuganbaev D. A., “Laurent series rings and pseudo-differential operator rings”, J. Math. Sci., 128:3 (2005), 2843–2893 | DOI | MR | Zbl