The Jacobson radical of the Laurent series ring
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 209-215
Voir la notice de l'article provenant de la source Math-Net.Ru
For a large class of rings $A$ including all rings with right Krull dimension, it is proved that for every automorphism $\varphi$ of the ring $A$, the Jacobson radical of the skew Laurent series ring $A((x,\varphi))$ is nilpotent and coincides with $N((x,\varphi))$, where $N$ is the prime radical of the ring $A$. If $A/N$ is a ring of bounded index, then the Jacobson radical of the Laurent series ring $A((x))$ coincides with $N((x))$.
@article{FPM_2006_12_2_a14,
author = {A. A. Tuganbaev},
title = {The {Jacobson} radical of the {Laurent} series ring},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {209--215},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a14/}
}
A. A. Tuganbaev. The Jacobson radical of the Laurent series ring. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 209-215. http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a14/