Semirings of cyclic types
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 175-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors investigate semirings of cyclic types from the algebraic point of view. To simplify and facilitate the analysis, local Fourier transform of these semirings is introduced. The authors describe zero divisors, nilpotent elements, invertible elements, idempotents, and the Jacobson radical.
@article{FPM_2006_12_2_a11,
     author = {A. V. Mikhalev and A. A. Nechaev and A. V. Prudnikov and M. S. Staroverov and A. S. Vydrin},
     title = {Semirings of cyclic types},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {175--192},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a11/}
}
TY  - JOUR
AU  - A. V. Mikhalev
AU  - A. A. Nechaev
AU  - A. V. Prudnikov
AU  - M. S. Staroverov
AU  - A. S. Vydrin
TI  - Semirings of cyclic types
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 175
EP  - 192
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a11/
LA  - ru
ID  - FPM_2006_12_2_a11
ER  - 
%0 Journal Article
%A A. V. Mikhalev
%A A. A. Nechaev
%A A. V. Prudnikov
%A M. S. Staroverov
%A A. S. Vydrin
%T Semirings of cyclic types
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 175-192
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a11/
%G ru
%F FPM_2006_12_2_a11
A. V. Mikhalev; A. A. Nechaev; A. V. Prudnikov; M. S. Staroverov; A. S. Vydrin. Semirings of cyclic types. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 175-192. http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a11/

[1] Dzhekobson N., Stroenie kolets, IL, M., 1961

[2] Kuzmin A. S., Kurakin V. L., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl