Semirings of cyclic types
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 175-192
The authors investigate semirings of cyclic types from the algebraic point of view. To simplify and facilitate the analysis, local Fourier transform of these semirings is introduced. The authors describe zero divisors, nilpotent elements, invertible elements, idempotents, and the Jacobson radical.
@article{FPM_2006_12_2_a11,
author = {A. V. Mikhalev and A. A. Nechaev and A. V. Prudnikov and M. S. Staroverov and A. S. Vydrin},
title = {Semirings of cyclic types},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {175--192},
year = {2006},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a11/}
}
TY - JOUR AU - A. V. Mikhalev AU - A. A. Nechaev AU - A. V. Prudnikov AU - M. S. Staroverov AU - A. S. Vydrin TI - Semirings of cyclic types JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 175 EP - 192 VL - 12 IS - 2 UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a11/ LA - ru ID - FPM_2006_12_2_a11 ER -
A. V. Mikhalev; A. A. Nechaev; A. V. Prudnikov; M. S. Staroverov; A. S. Vydrin. Semirings of cyclic types. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 175-192. http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a11/