Prime radicals of graded $\Omega$-groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 159-174
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we introduce the class of graded $\Omega$-groups, which includes: groups; associative, conformal and vertex algebras; Lie algebras and graded algebras. The graded prime radical of a graded $\Omega$-group is defined, and its elementwise characterization is given. It is shown that the graded prime radical of a graded $\Omega$-groups with a finiteness condition coincides with the lower weakly solvable (in Parfyonov sense) radical.
@article{FPM_2006_12_2_a10,
author = {A. V. Mikhalev and I. N. Balaba and S. A. Pikhtilkov},
title = {Prime radicals of graded $\Omega$-groups},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {159--174},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a10/}
}
TY - JOUR AU - A. V. Mikhalev AU - I. N. Balaba AU - S. A. Pikhtilkov TI - Prime radicals of graded $\Omega$-groups JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 159 EP - 174 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a10/ LA - ru ID - FPM_2006_12_2_a10 ER -
A. V. Mikhalev; I. N. Balaba; S. A. Pikhtilkov. Prime radicals of graded $\Omega$-groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 159-174. http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a10/