Prime radicals of graded $\Omega$-groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 159-174.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce the class of graded $\Omega$-groups, which includes: groups; associative, conformal and vertex algebras; Lie algebras and graded algebras. The graded prime radical of a graded $\Omega$-group is defined, and its elementwise characterization is given. It is shown that the graded prime radical of a graded $\Omega$-groups with a finiteness condition coincides with the lower weakly solvable (in Parfyonov sense) radical.
@article{FPM_2006_12_2_a10,
     author = {A. V. Mikhalev and I. N. Balaba and S. A. Pikhtilkov},
     title = {Prime radicals of graded $\Omega$-groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {159--174},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a10/}
}
TY  - JOUR
AU  - A. V. Mikhalev
AU  - I. N. Balaba
AU  - S. A. Pikhtilkov
TI  - Prime radicals of graded $\Omega$-groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 159
EP  - 174
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a10/
LA  - ru
ID  - FPM_2006_12_2_a10
ER  - 
%0 Journal Article
%A A. V. Mikhalev
%A I. N. Balaba
%A S. A. Pikhtilkov
%T Prime radicals of graded $\Omega$-groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 159-174
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a10/
%G ru
%F FPM_2006_12_2_a10
A. V. Mikhalev; I. N. Balaba; S. A. Pikhtilkov. Prime radicals of graded $\Omega$-groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 159-174. http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a10/

[1] Andrunakievich V. A,, Ryabukhin Yu. M., Radikaly algebr i strukturnaya teoriya, Nauka, M, 1979 | MR

[2] Babich A. M., “O radikale Levitskogo”, DAN SSSR, 126:2 (1959), 242–243 | Zbl

[3] Balaba I. N., “Koltsa chastnykh polupervichnykh graduirovannykh kolets”, Trudy uchastnikov mezhdunarodnogo seminara “Universalnaya algebra i eë prilozheniya” posvyaschënnogo pamyati L. A. Skornyakova, Volgograd, 2000, 21–28

[4] Balaba I. N., Pikhtilkov S. A., “Pervichnyi radikal spetsialnykh superalgebr Li”, Fundam. i prikl. mat., 9:1 (2003), 51–60 | MR

[5] Beidar K. I., Pikhtilkov S. A., “O pervichnom radikale spetsialnykh algebr Li”, Uspekhi mat. nauk, 1994, no. 1, 233 | MR | Zbl

[6] Beidar K. I., Pikhtilkov S A., “Pervichnyi radikal spetsialnykh algebr Li //”, Fundam. i prikl. mat, 6:3 (2000), 643–648 | MR | Zbl

[7] Golubkov A. Yu., “Pervichnyi radikal gruppy Shevalle nad kommutativnym koltsom”, Uspekhi mat. nauk, 55:3 (2000), 173–174 | MR | Zbl

[8] Golubkov A. Yu., “Pervichnyi ($RI^*$-razreshimyi) radikal unitarnoi gruppy nad koltsom s involyutsiei”, Fundam. i prikl. mat, 6:1 (2000), 93–119 | MR | Zbl

[9] Golubchik I. Z., Mikhalëv A. V., “Izomorfizmy unitarnykh grupp nad assotsiativnymi koltsami”, Zap. nauch. sem. LOMI AN SSSR, 132 (1983), 97–109 | MR

[10] Golubchik I. Z., Mikhalëv A. V., “Elementarnaya podgruppa unitarnoi gruppy nad PI-koltsom”, Vestn. Mosk. un-ta Ser. 1, Matematika, mekhanika, 1985, no. 1, 30–36 | MR | Zbl

[11] Dzhekobson N., Stroenie kolets, Izd. inostr. lit., M., 1961 | MR

[12] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym., Nauka, M., 1978 | MR | Zbl

[13] Kurosh A. G., Lektsii po obschei algebre, Nauka, M., 1973. | Zbl

[14] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR | Zbl

[15] Latyshev V. N., “Ob algebrakh Li s tozhdestvennymi sootnosheniyami”, Sib. mat. zhurn., 4:4 (1963), 821–829 | Zbl

[16] Latyshev V. N., Mikhalëv A. V., Pikhtilkov S. A., “O summe lokalno razreshimykh idealov algebr Li”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 2003, no. 3, 29–32 | MR | Zbl

[17] Mikhalëv A. A., “Podalgebry svobodnykh tsvetnykh superalgebr Li”, Mat. zametki, 37:5 (1985), 653–661 | MR | Zbl

[18] Mikhalëv A. A., “Svobodnye tsvetnye superalgebry Li”, DAN SSSR, 286 (1986), 551–554 | MR | Zbl

[19] Mikhalëv A. V., Shatalova M. A., “Pervichnyi radikal reshëtochno-uporyadochennykh kolets”, Sbornik rabot po algebre, Izd-vo Mosk. un-ta, M., 1989, 178–184

[20] Mikhalëv A. V., Shatalova M. A., “Pervichnyi radikal reshëtochno-uporyadochennykh grupp”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 1990, no. 2, 84–86 | MR

[21] Mikhalëv A. V., Shatalova M. A., “Pervichnyi radikal $\Omega$-grupp i $\Omega$-$l$-grupp”, Fundam. i prikl. mat., 4:4 (1998), 1405–1413 | MR | Zbl

[22] Parfënov V. A., “O slabo razreshimom radikale algebr Li”, Sib. mat. zhurn., 12:1 (1971), 171–176 | MR | Zbl

[23] Shirshov A. I., “Podalgebry svobodnykh lievykh algebr”, Mat. sb., 33 (75), no. 2, 1953, 441–452 | Zbl

[24] Schukin K. I., $RI^*$-razreshimyi radikal grupp, 52:4 (1960), 1024–1031 \language=0

[25] Amayo R., Stewart I., Infinite-dimensional Lie algebras, Noordhoff, Leyden, 1974 | MR | Zbl

[26] Bahturin Yu. A., Mikhalev A. A., Petrogradsky V. M., Zaitsev M. V., Expositions in Mathematics V. 7, 1992 | MR | Zbl

[27] Baumslag G., Kovacs L. G., Neumann B. H., “On products of normal subgroups”, Acta Sci. Math., 26 (1965), 145–147 | MR | Zbl

[28] Bokut L. A., Fong Y., Ke W.-F., “Gröbner–Shirshov bases and composition lemma for associative conformal algebras: An example”, Contemp. Math., 264 (2000), 63–90 | MR | Zbl

[29] Buys A., Gerber G. K., “The prime radical for $\Omega$-groups”, Comm. Algebra, 10 (1982), 1089–1099 | DOI | MR | Zbl

[30] Cohen M., Montgomery S., “Group-graded rings, smash products, and group action”, Trans. Amer. Math. Soc., 282:1 (1984), 237–257 | DOI | MR

[31] Kac V. G., University Lecture Series V. 10, Amer. Math. Soc., Providence, 1996 | MR | Zbl

[32] Liu S.-X., van Oystaeyen F., “Group-graded rings, smash product and additive categories Perspectives in Ring Theory”, Kluwer Academic, 1988, 299–300 | MR

[33] Plotkin B. I., “Notes on Engl groups and Engel elements in groups Some generalizations”, Izv. UrGU, 2005, no. 36, 153–166 | MR | Zbl

[34] Roitman M., “On free conformal and vertex algebras”, J. Algebra, 217 (1999), 496–527 | DOI | MR | Zbl