On domains of regularity of the solutions of some special classes of Monge--Amp\`ere type equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 237-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present several results on estimates from above of the regularity domains for special classes of solutions to Monge–Ampère type equations (in particular, periodic at least in one variable). Also we give the geometrical and geophysical applications. Namely, we concern with the problem on dimensions of a single-valued projection on a plane of a surface with separated from zero negative Gaussian curvature and discuss the existence or nonexistence of solution to the pressure-wind balance equation on a torus.
@article{FPM_2006_12_1_a7,
     author = {O. S. Rozanova},
     title = {On domains of regularity of the solutions of some special classes of {Monge--Amp\`ere} type equations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {237--246},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a7/}
}
TY  - JOUR
AU  - O. S. Rozanova
TI  - On domains of regularity of the solutions of some special classes of Monge--Amp\`ere type equations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 237
EP  - 246
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a7/
LA  - ru
ID  - FPM_2006_12_1_a7
ER  - 
%0 Journal Article
%A O. S. Rozanova
%T On domains of regularity of the solutions of some special classes of Monge--Amp\`ere type equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 237-246
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a7/
%G ru
%F FPM_2006_12_1_a7
O. S. Rozanova. On domains of regularity of the solutions of some special classes of Monge--Amp\`ere type equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 237-246. http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a7/

[1] Azov D. G., “O klasse giperbolicheskikh uravnenii Monzha–Ampera”, Uspekhi mat. nauk, 38:1 (1983), 153–154 | MR | Zbl

[2] Bratkov Yu. N., “O suschestvovanii klassicheskogo resheniya uravneniya Monzha–Ampera giperbolicheskogo tipa v tselom”, Fundam. i prikl. mat., 6:2 (2000), 379–390 | MR | Zbl

[3] Efimov N. V., “Issledovanie odnoznachnoi proektsii poverkhnosti otritsatelnoi krivizny”, DAN SSSR, 93:4 (1953), 609–611 | MR | Zbl

[4] Efimov N. V., “Otsenki oblastei regulyarnosti nekotorykh uravnenii Monzha–Ampera”, Mat. sb., 100:3 (1976), 356–363 | MR | Zbl

[5] Kurant R., Gilbert D., Metody matematicheskoi fiziki, II, Gostekhizdat, M., L., 1951

[6] Rozendorn E. R., “Svedenie odnoi meteorologicheskoi zadachi k geometricheskoi”, Uspekhi mat. nauk., 35:6 (1980), 167–168 | MR | Zbl

[7] Rozendorn E. R., “Poverkhnosti s otritsatelnoi kriviznoi”, Geometriya - 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 48, VINITI, M., 1989, 98–195 | MR

[8] Bolin B., “An improved barotropic model and some aspects of using the balance equation on three-dimensional flows”, Tellus, 8:1 (1956), 61–75 | DOI

[9] Heinz E., “Über Flächen mit eineindeutiger Projektion auf eine Ebene, deren Krümmungen durch Ungleichungen eingeschränkt sind”, Math. Ann., 129:5 (1955), 451–454 | DOI | MR | Zbl

[10] Hilbert D., “Über Flächen von konstanter Gau{\fontfamily{cmr}\selectfontß'scher Krümmung”, Amer. Math. Soc. Trans., 2 (1901), 87–99 | DOI | MR | Zbl

[11] Hong J., “Some new development of realization of surfaces into $\mathbb R^3$”, Proc. Int. Congress of Mathematicians (Bejeeng), III, 2002, 155–165 | MR | Zbl

[12] Tien N., Kong D., Tsuji M., “Integration of Monge–Ampère equations and surfaces with negative Gaussian curvature”, IV, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27:2 (1998), 309–330 | MR | Zbl

[13] Tsuji M., “Formation of singularities for Monge–Ampère equations”, Bull. Sci. Math., 119 (1995), 433–457 | MR | Zbl

[14] Tsuji M., “Monge–Ampère equations and surfaces withnegative Gaussian curvature”, Symplectic singularities and geometry of gauge fields. Proc. Banach Center Symposium on Differential Geometry and Mathematical Physics in Spring (1995, Warsaw, Poland. Warsaw: Polish Academy of Sciences, Inst. of Mathematics), 39, ed. R. Budzynski et al., Banach Cent. Publ., 1997, 161–170 | MR | Zbl