Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_1_a7, author = {O. S. Rozanova}, title = {On domains of regularity of the solutions of some special classes of {Monge--Amp\`ere} type equations}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {237--246}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a7/} }
TY - JOUR AU - O. S. Rozanova TI - On domains of regularity of the solutions of some special classes of Monge--Amp\`ere type equations JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 237 EP - 246 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a7/ LA - ru ID - FPM_2006_12_1_a7 ER -
%0 Journal Article %A O. S. Rozanova %T On domains of regularity of the solutions of some special classes of Monge--Amp\`ere type equations %J Fundamentalʹnaâ i prikladnaâ matematika %D 2006 %P 237-246 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a7/ %G ru %F FPM_2006_12_1_a7
O. S. Rozanova. On domains of regularity of the solutions of some special classes of Monge--Amp\`ere type equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 237-246. http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a7/
[1] Azov D. G., “O klasse giperbolicheskikh uravnenii Monzha–Ampera”, Uspekhi mat. nauk, 38:1 (1983), 153–154 | MR | Zbl
[2] Bratkov Yu. N., “O suschestvovanii klassicheskogo resheniya uravneniya Monzha–Ampera giperbolicheskogo tipa v tselom”, Fundam. i prikl. mat., 6:2 (2000), 379–390 | MR | Zbl
[3] Efimov N. V., “Issledovanie odnoznachnoi proektsii poverkhnosti otritsatelnoi krivizny”, DAN SSSR, 93:4 (1953), 609–611 | MR | Zbl
[4] Efimov N. V., “Otsenki oblastei regulyarnosti nekotorykh uravnenii Monzha–Ampera”, Mat. sb., 100:3 (1976), 356–363 | MR | Zbl
[5] Kurant R., Gilbert D., Metody matematicheskoi fiziki, II, Gostekhizdat, M., L., 1951
[6] Rozendorn E. R., “Svedenie odnoi meteorologicheskoi zadachi k geometricheskoi”, Uspekhi mat. nauk., 35:6 (1980), 167–168 | MR | Zbl
[7] Rozendorn E. R., “Poverkhnosti s otritsatelnoi kriviznoi”, Geometriya - 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 48, VINITI, M., 1989, 98–195 | MR
[8] Bolin B., “An improved barotropic model and some aspects of using the balance equation on three-dimensional flows”, Tellus, 8:1 (1956), 61–75 | DOI
[9] Heinz E., “Über Flächen mit eineindeutiger Projektion auf eine Ebene, deren Krümmungen durch Ungleichungen eingeschränkt sind”, Math. Ann., 129:5 (1955), 451–454 | DOI | MR | Zbl
[10] Hilbert D., “Über Flächen von konstanter Gau{\fontfamily{cmr}\selectfontß'scher Krümmung”, Amer. Math. Soc. Trans., 2 (1901), 87–99 | DOI | MR | Zbl
[11] Hong J., “Some new development of realization of surfaces into $\mathbb R^3$”, Proc. Int. Congress of Mathematicians (Bejeeng), III, 2002, 155–165 | MR | Zbl
[12] Tien N., Kong D., Tsuji M., “Integration of Monge–Ampère equations and surfaces with negative Gaussian curvature”, IV, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27:2 (1998), 309–330 | MR | Zbl
[13] Tsuji M., “Formation of singularities for Monge–Ampère equations”, Bull. Sci. Math., 119 (1995), 433–457 | MR | Zbl
[14] Tsuji M., “Monge–Ampère equations and surfaces withnegative Gaussian curvature”, Symplectic singularities and geometry of gauge fields. Proc. Banach Center Symposium on Differential Geometry and Mathematical Physics in Spring (1995, Warsaw, Poland. Warsaw: Polish Academy of Sciences, Inst. of Mathematics), 39, ed. R. Budzynski et al., Banach Cent. Publ., 1997, 161–170 | MR | Zbl