Approximation of solutions of the Monge--Amp\`ere equations by surfaces reduced to developable surfaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 205-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an approximate construction of the surface $S$ being the graph of a $C^2$-smooth solution $z=z(x,y)$ of the parabolic Monge–Ampère equation $$ (z_{xx}+a)(z_{yy}+b)-z_{xy}^2=0 $$ of a special form with the initial conditions $$ z(x,0)=\varphi(x),\quad q(x,0)=\psi(x), $$ where $a=a(y)$ and $b=b(y)$ are given functions. In the method proposed, the desired solution is approximated by a sequence of $C^1$-smooth surfaces $\{S_n\}$ each of which consists of parts of surfaces reduced to developable surfaces. In this case, the projections of characteristics of the surface $S$ being curved lines in general are approximated by characteristic projections of the surfaces $S_{n}$ being polygonal lines composed of $n$ links. The results of these constructions are formulated in the theorem. Sufficient conditions for the convergence of the family of surfaces $S_{n}$ to the surface $S$ as $n\to\infty$ are presented; this allows one to construct a numerical solution of the problem with any accuracy given in advance.
@article{FPM_2006_12_1_a6,
     author = {L. B. Pereyaslavskaya},
     title = {Approximation of solutions of the {Monge--Amp\`ere} equations by surfaces reduced to developable surfaces},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {205--236},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a6/}
}
TY  - JOUR
AU  - L. B. Pereyaslavskaya
TI  - Approximation of solutions of the Monge--Amp\`ere equations by surfaces reduced to developable surfaces
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 205
EP  - 236
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a6/
LA  - ru
ID  - FPM_2006_12_1_a6
ER  - 
%0 Journal Article
%A L. B. Pereyaslavskaya
%T Approximation of solutions of the Monge--Amp\`ere equations by surfaces reduced to developable surfaces
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 205-236
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a6/
%G ru
%F FPM_2006_12_1_a6
L. B. Pereyaslavskaya. Approximation of solutions of the Monge--Amp\`ere equations by surfaces reduced to developable surfaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 205-236. http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a6/

[1] Gursa E., Kurs matematicheskogo analiza, ONTI, M., L., 1935

[2] Norden A. P., Kratkii kurs differentsialnoi geometrii, Fizmatgiz, M., 1958

[3] Pereyaslavskaya L. B., Otsenki rosta proizvodnykh dlya resheniya parabolicheskogo uravneniya Monzha–Ampera i protyazhennost subtropicheskikh antitsiklonov, Dep. v VINITI 09.07.84

[4] Pereyaslavskaya L. B., Rozendorn E. R., “Parabolicheskie uravneniya Monzha–Ampera v zadachakh geometriii meteorologii”, Izv. vyssh. uchebn. zaved. Matematika, 1996, no. 2 (405), 41–43 | MR | Zbl

[5] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1982 | MR | Zbl

[6] Rozendorn E. R., “Priblizhennoe reshenie uravneniya balansa vetra i davleniya dlya antitsiklonov v tropicheskikh i subtropicheskikh shirotakh”, DAN SSSR, 253:3 (1980), 584–587 | MR

[7] Rozendorn E. R., “Reduktsiya odnoi zadachi meteorologii k geometricheskoi zadache”, Uspekhi mat. nauk, 35:6. (1980), 167–168 | MR | Zbl