A~method for solving the problem of isometric realization of developments
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 167-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a new algorithmic solution for the problem of isometric realization of developments. For any development a system of polynomial equations is composed such that its solutions are in some sence in bijective correspondence with all possible isometric realizations of the development. An important advantage of the method is the fact that it can be applied in practical computation.
@article{FPM_2006_12_1_a5,
     author = {S. N. Mikhalev},
     title = {A~method for solving the problem of isometric realization of developments},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {167--203},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a5/}
}
TY  - JOUR
AU  - S. N. Mikhalev
TI  - A~method for solving the problem of isometric realization of developments
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 167
EP  - 203
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a5/
LA  - ru
ID  - FPM_2006_12_1_a5
ER  - 
%0 Journal Article
%A S. N. Mikhalev
%T A~method for solving the problem of isometric realization of developments
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 167-203
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a5/
%G ru
%F FPM_2006_12_1_a5
S. N. Mikhalev. A~method for solving the problem of isometric realization of developments. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 167-203. http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a5/

[1] Koks D., Littl Dzh., O'Shi D., Idealy, mnogoobraziya i algoritmy, Mir, M., 2000

[2] Latyshev V. N., Kombinatornaya teoriya kolets. Standartnye bazisy, Izd-vo Mosk. un-ta, M., 1988 | MR | Zbl

[3] Sabitov I. Kh., “Lokalnaya teoriya izgibanii poverkhnostei”, Itogi nauki i tekhn. Ser. Sovr. probl. matematiki. Fundamentalnye napravleniya, 48, VINITI, M., 1989, 196–270 | MR

[4] Sabitov I. Kh., “Obobschënnaya formula Gerona–Tartalya i nekotorye eë sledstviya”, Mat. sb., 189:10 (1998), 105–134 | MR | Zbl

[5] Sabitov I. Kh., “Algoritmicheskoe reshenie problemy izometricheskikh realizatsii dvumernykh mnogogrannykh metrik”, Izv. RAN. Ser. mat., 66:2 (2002), 159–172 | MR | Zbl

[6] Legendre A., Elements de geometrie, 1806

[7] Whitney H., “A theorem on graphs”, Ann. Math., 32 (1931), 378–390 | DOI | MR | Zbl