Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_1_a4, author = {I. G. Maksimov}, title = {Nonflexible polyhedra with small number of verticies}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {143--165}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a4/} }
I. G. Maksimov. Nonflexible polyhedra with small number of verticies. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 143-165. http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a4/
[1] Issledovaniya po metricheskoi teorii poverkhnostei, Mir, M., 1980 | MR
[2] Maksimov I. G., “Podveski: ob'ëmy, pogruzhënnost i neizgibaemost”, Mat. zametki, 56:6 (1994), 56–63 | MR | Zbl
[3] Sabitov I. Kh., “Algoritmicheskaya proverka izgibaemosti podvesok”, Ukr. geom. sbornik, 30 (1987), 109–112 | Zbl
[4] Sabitov I. Kh., “Lokalnaya teoriya izgibanii”, Itogi nauki i tekhn. Ser. Sovr. probl. matematiki. Fundamentalnye napravleniya, 48, VINITI, M., 1989, 196–270 | MR
[5] Bowen R., Fisk S., “Generation of triangulations of the sphere”, Math. Compute., 21:98 (1967), 250–252 | DOI | MR | Zbl
[6] Bricard R., “Mémoire sur la théory de l'octaèdre articulé”, J. Math. Pures Appl., 5:3 (1897), 113–148 | Zbl
[7] Connelly R., “A counter example to the rigidity conjecture for polyhedra”, Publ. Math. IHES, 47 (1978), 333–338 | MR
[8] Connelly R., An attack on rigidity, Preprint, Cornell Univ., 1974 | MR | Zbl
[9] Gluck H., “Almost all simply connected closed surfaces are rigid”, Geometric Topology, Proc. Geometric Topology Conf. (held at Park City, Utah), Lect. Notes Math., 438, Springer, Berlin, 1974, 225–238 | MR
[10] Steffen K., A symmetric flexible Connelly sphere with only nine vertices, Preprint. IHES, Bures-sur-Yvette