Nonflexible polyhedra with small number of verticies
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 143-165.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper shows which embedded and immersed polyhedra with no more than eight vertices are nonflexible. It turns out that all embedded polyhedra are nonflexible, possibly, except for polyhedra of one of the combinatorial types, for which the problem remains still open.
@article{FPM_2006_12_1_a4,
     author = {I. G. Maksimov},
     title = {Nonflexible polyhedra with small number of verticies},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {143--165},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a4/}
}
TY  - JOUR
AU  - I. G. Maksimov
TI  - Nonflexible polyhedra with small number of verticies
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 143
EP  - 165
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a4/
LA  - ru
ID  - FPM_2006_12_1_a4
ER  - 
%0 Journal Article
%A I. G. Maksimov
%T Nonflexible polyhedra with small number of verticies
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 143-165
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a4/
%G ru
%F FPM_2006_12_1_a4
I. G. Maksimov. Nonflexible polyhedra with small number of verticies. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 143-165. http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a4/

[1] Issledovaniya po metricheskoi teorii poverkhnostei, Mir, M., 1980 | MR

[2] Maksimov I. G., “Podveski: ob'ëmy, pogruzhënnost i neizgibaemost”, Mat. zametki, 56:6 (1994), 56–63 | MR | Zbl

[3] Sabitov I. Kh., “Algoritmicheskaya proverka izgibaemosti podvesok”, Ukr. geom. sbornik, 30 (1987), 109–112 | Zbl

[4] Sabitov I. Kh., “Lokalnaya teoriya izgibanii”, Itogi nauki i tekhn. Ser. Sovr. probl. matematiki. Fundamentalnye napravleniya, 48, VINITI, M., 1989, 196–270 | MR

[5] Bowen R., Fisk S., “Generation of triangulations of the sphere”, Math. Compute., 21:98 (1967), 250–252 | DOI | MR | Zbl

[6] Bricard R., “Mémoire sur la théory de l'octaèdre articulé”, J. Math. Pures Appl., 5:3 (1897), 113–148 | Zbl

[7] Connelly R., “A counter example to the rigidity conjecture for polyhedra”, Publ. Math. IHES, 47 (1978), 333–338 | MR

[8] Connelly R., An attack on rigidity, Preprint, Cornell Univ., 1974 | MR | Zbl

[9] Gluck H., “Almost all simply connected closed surfaces are rigid”, Geometric Topology, Proc. Geometric Topology Conf. (held at Park City, Utah), Lect. Notes Math., 438, Springer, Berlin, 1974, 225–238 | MR

[10] Steffen K., A symmetric flexible Connelly sphere with only nine vertices, Preprint. IHES, Bures-sur-Yvette