Phase topology of Appelrot class~I of Kowalewski top in a~magnetic field
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 95-128
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider an integrable case generalizing the Appelrot class I of Kowalewski top in a magnetic field. Its phase topology is investigated by means of Fomenko–Zieschang invariants. The offered method of approach to the calculation of marks completes Bolsinov's method in the situation when it is not usable.
@article{FPM_2006_12_1_a2,
author = {D. B. Zot'ev},
title = {Phase topology of {Appelrot} {class~I} of {Kowalewski} top in a~magnetic field},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {95--128},
publisher = {mathdoc},
volume = {12},
number = {1},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a2/}
}
D. B. Zot'ev. Phase topology of Appelrot class~I of Kowalewski top in a~magnetic field. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 95-128. http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a2/