Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_1_a0, author = {I. Ivanova-Karatopraklieva and P. E. Markov and I. Kh. Sabitov}, title = {Bending of {surfaces.~III}}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {3--56}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a0/} }
I. Ivanova-Karatopraklieva; P. E. Markov; I. Kh. Sabitov. Bending of surfaces.~III. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 3-56. http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a0/
[1] Aminov Yu. A., Geometriya podmnogoobrazii, Naukova dumka, Kiev, 2002, 468 pp. | Zbl
[2] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, M., 1974, 432 pp. | MR | Zbl
[3] Borisenko A. A., “Ob izometricheskikh podmnogoobraziyakh proizvolnoi korazmernosti v evklidovom prostranstve s sovpadayuschimi grassmanovymi obrazami”, Mat. zametki, 52:4 (1992), 29–34 | MR | Zbl
[4] Borovskii Yu. E., “Vpolne integriruemye sistemy Pfaffa”, Izv. vyssh. uchebn. zaved. Matematika, 1959, no. 2, 28–40 | MR | Zbl
[5] Borovskii Yu. E., “O vpolne integriruemykh sistemakh Pfaffa”, Izv. vyssh. uchebn. zaved. Matematika, 1960, no. 1, 35–38 | MR | Zbl
[6] Borovskii Yu. E., “Teorema Bitsa dlya neregulyarnykh giperpoverkhnostei”, Sib. mat. zhurn., 4:4 (1963), 744–751 | MR | Zbl
[7] Borovskii Yu. E., “Sistemy Pfaffa s koeffitsientami iz $L_n$ i ikh geometricheskie prilozheniya”, Sib. mat. zhurn., 24:2 (1988), 10–16 | MR
[8] Burbaki N., Differentsiruemye i analiticheskie mnogoobraziya. Svodka rezultatov, M., 1975, 220 pp. | MR | Zbl
[9] Vasilev A. M., Teoriya differentsialno-geometricheskikh struktur, Izd-vo Mosk. un-ta, M., 1987, 192 pp. | MR | Zbl
[10] Vekua I. N., Obobschënnye analiticheskie funktsii, M., 1988, 510 pp. | MR | Zbl
[11] Gorzii T. A., “O lokalnoi neizgibaemosti vypuklykh giperpoverkhnostei ellipticheskogo prostranstva”, Ukr. geom. sb., 18 (1975), 49–50 | MR | Zbl
[12] Gorzii T. A., “Zhëstkost vypuklykh giperpoverkhnostei ellipticheskogo prostranstva”, Ukr. geom. sb., 18 (1976), 66–68 | MR
[13] De Ram Zh., Differentsiruemye mnogoobraziya, M., 1956, 250 pp.
[14] Dzhakobovich G., “Prodolzhennye izometricheskie vlozheniya Issledovaniya po metricheskoi teorii poverkhnostei”, Ser. Matematika. Novoe v zarubezhnoi nauke, Nauka, M., 1980, 239–263
[15] Efimov N. V., “Kachestvennye voprosy teorii deformatsii poverkhnostei”, Uspekhi mat. nauk, 3:2 (1948), 47–158 | MR | Zbl
[16] Efimov N. V., Kachestvennye voprosy teorii deformatsii poverkhnostei v malom, Tr. MIAN SSSR, 30, M.–L., 1949, 128 pp. | MR | Zbl
[17] Efimov N. V., “Nekotorye predlozheniya o zhëstkosti i neizgibaemosti”, Uspekhi mat. nauk., 7:5 (1952), 215–224 | MR | Zbl
[18] Ivanova-Karatopraklieva I., Sabitov I. Kh., “Izgibanie poverkhnostei. I”, Itogi nauki i tekhn. Ser. Probl. geometrii., 23, VINITI, M., 1991, 131–184 | MR
[19] Ivanova-Karatopraklieva I., Sabitov I. Kh., “Izgibanie poverkhnostei. II”, Tematicheskie obzory, Itogi nauki i tekhn. Ser. Sovr. mat. i eë pril., 8, VINITI, M., 1995, 108–167
[20] Kagan V. F., Osnovy teorii poverkhnostei, t. 2, OGIZ, GITTL, M., L., 1948, 407 pp. | MR | Zbl
[21] Kartan E., Geometriya rimanovykh prostranstv, M., 1936, 244 pp.
[22] Keiper N., “O $C^1$-izometrichnykh vlozheniyakh”, Matematika. Sb. perevodov, 1:2 (1957), 17–28
[23] Kim V. S., “Ob odnoznachnoi opredelënnosti dvumernykh poverkhnostei v evklidovom prostranstve”, Voprosy differentsialnoi geometrii v tselom, L., 1983, 67–74 | Zbl
[24] Klimentov S. B., “Globalnaya formulirovka osnovnoi teoremy teorii $n$-mernykh poverkhnostei v $m$-mernom prostranstve postoyannoi krivizny”, Ukr. geom. sb., 22 (1979), 64–81 | MR | Zbl
[25] Klimentov S. B., “O prodolzhenii beskonechno malykh izgibanii vysshikh poryadkov odnosvyaznoi poverkhnosti polozhitelnoi krivizny”, Mat. zametki, 36:3 (1984), 393–403 | MR | Zbl
[26] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, t. 2, M., 1981, 416 pp.
[27] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, M., 1967, 204 pp.
[28] Lizunova L. Yu, “O beskonechno malykh izgibaniyakh giperpoverkhnostei v rimanovom prostranstve”, Izv. vyssh. uchebn. zaved. Matematika, 1970, no. 3, 36–42 | MR | Zbl
[29] Luzin N. N., “Dokazatelstvo odnoi teoremy teorii izgibaniya”, Izv. AN SSSR. OTN, 1939, no. 2, 81–106 ; no. 7, 115–132 ; no. 10, 65–84 | Zbl
[30] Markov P. E., “Beskonechno malye izgibaniya dvumernoi poverkhnosti v chetyrëkhmernom ploskom prostranstve”, Ukr. geom. sb., 21 (1978), 55–72 | MR | Zbl
[31] Markov P. E., “Beskonechno malye izgibaniya nekotorykh mnogomernykh poverkhnostei”, Mat. zametki, 27:3 (1980), 469–479 | MR | Zbl
[32] Markov P. E., “Beskonechno malye izgibaniya vysshikh poryadkov mnogomernykh poverkhnostei”, Ukr. geom. sb., 25 (1982), 87–94 | Zbl
[33] Markov P. E., “Beskonechno malye izgibaniya odnogo klassa mnogomernykh poverkhnostei s kraem”, Mat. sb., 121:1 (1983), 48–59 | MR
[34] Markov P. E., “Ob odnom klasse beskonechno malykh izgibanii poverkhnostei”, Izv. SKNTs VSh, 1985, no. 4, 22–25 | Zbl
[35] Markov P. E., “Beskonechno malye izgibaniya vysshikh poryadkov mnogomernykh poverkhnostei v prostranstvakh postoyannoi krivizny”, Mat. sb., 133:1 (1987), 64–85 | Zbl
[36] Markov P. E., “O pogruzhenii metrik, blizkikh k pogruzhaemym”, Ukr. geom. sb., 35 (1992), 49–67 | MR
[37] Markov P. E., “Obschie analiticheskie i beskonechno malye deformatsii pogruzhenii. 1”, Izv. vyssh. uchebn. zaved. Matematika, 1997, no. 9, 21–34 | MR | Zbl
[38] Markov P. E., “Obschie analiticheskie i beskonechno malye deformatsii pogruzhenii. 2”, Izv. vyssh. uchebn. zaved. Matematika, 1997, no. 11, 41–51 | MR | Zbl
[39] Markov P. E., “Kriterii kongruentnosti mnogomernykh poverkhnostei v terminakh osnovnykh form”, Tezisy dokl. na Mezhdunarodnoi shkole-seminare po geometrii i analizu pamyati N. V. Efimova, Rostov-na-Donu, 1998, 50–51
[40] Markov P. E., “Tipovoe chislo i zhëstkost mnogomernykh poverkhnostei”, Mat. sb., 192:1 (2001), 67–88 | MR | Zbl
[41] Markov P. E., Shapovalova L. N., “Ob odnoi sisteme uravnenii teorii izometricheskikh pogruzhenii”, Izv. vyssh. uchebn. zaved. Severo-Kavkazskii region, 1995, no. 2, 13–17 | Zbl
[42] Mlodz'evskii B. K., Izsl'dovaniya ob' izgibanii poverkhnostei, M., 1886, 134 pp.
[43] Mur Dzh. D., “Izometricheskie pogruzheniya rimanovykh proizvedenii. Issledovaniya po metricheskoi teorii poverkhnostei”, Ser. Matematika. Novoe v zarubezhnoi nauke, Nauka, M., 1980, 264–276
[44] Nesh Dzh., “$C^1$-izometrichnye vlozheniya”, Matematika. Sb. perevodov, 1:2 (1957), 3–16
[45] Nesh Dzh., “Problema vlozhenii dlya rimanovykh mnogoobrazii”, Uspekhi mat. nauk, 26:4 (1971), 173–216 | MR
[46] Perepëlkin D. I., “Krivizna i normalnye prostranstva mnogoobraziya $V_m$ v $R_n$”, Mat. sb., 42:1 (1935), 81–120 | Zbl
[47] Pogorelov A. V., Vneshnyaya geometriya vypuklykh poverkhnostei, M., 1969, 760 pp. | MR
[48] Postnikov M. M., Lektsii po geometrii. Semestr 2. Lineinaya algebra, M., 1986, 400 pp. | MR
[49] Ryzhkov V. V., “Izgibanie poverkhnostei evklidova prostranstva $E_N$ s sokhraneniem sopryazhënnoi sistemy”, Tr. Mosk. inzhenerno-stroitelnogo in-ta, 1960, no. 8, 86–112
[50] Sabitov I. Kh., “Lokalnaya teoriya izgibanii poverkhnostei”, Itogi nauki i tekhn. Ser. Sovr. probl. matematiki. Fundamentalnye napravleniya, 48, VINITI, M., 1989, 196–270 | MR
[51] Senkin E. P., “Ob odnom svoistve izometricheskikh preobrazovanii vypuklykh poverkhnostei v prostranstve vysshego tipa izmerenii”, Ukr. geom. sb., 3 (1966), 95 | MR
[52] Senkin E. P., “Neizgibaemost vypuklykh giperpoverkhnostei”, Ukr. geom. sb., 12 (1972), 131–152 | MR
[53] Senkin E. P., “Dopolnenie k state «Neizgibaemost vypuklykh giperpoverkhnostei»”, Ukr. geom. sb., 17 (1975), 132–134 | MR
[54] Sindzh Dzh. L., Tenzornye metody v dinamike, M., 1947, 44 pp.
[55] Sobolev S. D., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1960, 255 pp.
[56] Sokolov N. P., Prostranstvennye matritsy i ikh prilozheniya, M., 1960, 300 pp. | MR
[57] Sretenskii L. N., “Ob izgibanii poverkhnostei”, Mat. sb., 36:2 (1929), 109–111
[58] Skhouten I. A., Stroik D. Dzh., Vvedenie v novye metody differentsialnoi geometrii, t. 2, M., 1948, 348 pp.
[59] Finikov S. P., Metod vneshnikh form Kartana v differentsialnoi geometrii, M., L., 1948, 432 pp. | MR | Zbl
[60] Khu Kheshen, “Ob izgibanii giperpoverkhnosti $V_m$ v evklidovom $E_{m+1}$ s sokhraneniem srednei krivizny”, Acta Math. Sinica, 6:1 (1956), 127–137 | MR
[61] Shkryl E. V., “O zhëstkosti mnogomernogo konusa”, Izv. vyssh. uchebn. zaved. Severo-Kavkazskii region, 2000, no. 4, 20–22 | Zbl
[62] Eizenkhart L. P., Rimanova geometriya, M., 1948, 316 pp.
[63] Yanenko N. N., “Geometricheskaya struktura poverkhnostei malogo tipa”, DAN SSSR, 64:5 (1949), 641–644 | MR | Zbl
[64] Yanenko N. N., “O nekotorykh neobkhodimykh kriteriyakh izgibaemosti poverkhnostei v mnogomernom evklidovom prostranstve”, DAN SSSR, 65:4 (1949), 449–452 | MR | Zbl
[65] Yanenko N. N., “Struktura izgibaemykh poverkhnostei v mnogomernom evklidovom prostranstve”, DAN SSSR, 72:5 (1950), 857–859 | MR | Zbl
[66] Yanenko N. N., “O nekotorykh proektivno-invariantnykh svoistvakh izgibaemykh poverkhnostei mnogomernogo evklidova prostranstva”, DAN SSSR, 72:6 (1950), 1025–1028 | MR | Zbl
[67] Yanenko N. N., “Beskonechno malye izgibaniya poverkhnostei mnogomernogo evklidova prostranstva i proektivno-invariantnye kharakteristiki izgibaemykh poverkhnostei”, Uspekhi mat. nauk, 7 (1952), 138–139 | Zbl
[68] Yanenko N. N., “O svyazi mezhdu metricheskimi i proektivnymi svoistvami poverkhnostei”, DAN SSSR, 82:5 (1952), 685–688 | MR | Zbl
[69] Yanenko N. N., “O klasse rimanovoi metriki”, DAN SSSR, 83:4 (1952), 533–536 | MR | Zbl
[70] Yanenko N. N., “Metriki klassa 2”, DAN SSSR, 83:5 (1952), 667–669 | MR | Zbl
[71] Yanenko N. N., “Nekotorye neobkhodimye priznaki izgibaemykh poverkhnostei $V_m$ v $(m+q)$-mernom evklidovom prostranstve”, Tr. seminara po vekt. i tenz. analizu, 9, 1952, 236–287 | MR | Zbl
[72] Yanenko N. N., “Nekotorye voprosy vlozheniya rimanovykh metrik v evklidovy prostranstva”, Uspekhi mat. nauk, 8:1 (1953), 21–100 | MR | Zbl
[73] Yanenko N. N., “K teorii vlozheniya poverkhnostei v mnogomernom evklidovom prostranstve”, Tr. MMO, 3, 1954, 89–180 | MR | Zbl
[74] Abe K., Erbacher J., “Isometric immersions with the same Gauss map”, Math. Ann., 215 (1975), 197–201 | DOI | MR | Zbl
[75] Allendoerfer C. B., “Rigidity for spaces class greater than one”, Amer. Math. J., 61:1 (1939), 633–644 | DOI | MR | Zbl
[76] Beez R., “Zur Theorie des Krümmungsmasses von Mannigfaltigkeiten höherer Ordnung”, Zeitschr. Math. Phys., 20 (1875), 423–444
[77] Beez R., “Zur Theorie des Krümmungsmasses von Mannigfaltigkeiten höherer Ordnung”, Zeitschr. Math. Phys., 21 (1876), 373–401
[78] Berger E., Bryant R., Griffiths P., “The Gauss equations and rigidity of isometric embeddings”, Duke Math. J., 50:3 (1983), 803–892 | DOI | MR | Zbl
[79] Bianchi L., Lezioni di geometria differenziale, vol. 1, Spoerri, Pisa, 1902 | Zbl
[80] Bianchi L., Lezioni di geometria differenziale, vol. 2, Spoerri, Pisa, 1903 | Zbl
[81] Bishop R. L., “An infinitesimal cylindricity theorem Tenzor”, Tensor (N.S.), 38:2 (1982), 147–153 | MR | Zbl
[82] Bleecker D., “Isometric deformations of compact hypersurfaces”, Geom. Dedicata, 64:2 (1997), 193–227 | DOI | MR | Zbl
[83] Borissenko A., “About isometric submanifolds of the arbitrary codimension with the same Grassmannian image”, Congr. Geom. (Thessaloniki, 1991), 114
[84] Bryant R., Griffiths P., Yang D., “Characteristics and existence of isometric embeddings”, Duke Math. J., 50:4 (1983), 893–994 | DOI | MR | Zbl
[85] Cartan E., “La déformation des hypersurfaces dans l'espace euclideen réel a $n$ dimensions”, Bull. Soc. Math. France, 44 (1916), 65–99 | MR | Zbl
[86] Cartan E., “Sur la possibilité de plonger un espace riemannien donné dans un espace euclideen”, Ann. Soc. Math. Polon., 6 (1927), 1–7
[87] Chen P. C., “A characterization of the catenoid”, An. Acad. Brasil. Ci., 51 (1979), 1–3 | MR | Zbl
[88] Chen F., “Isometric surfaces in $E^5$. Jiangxi Shifan Daxue Xuebao Ziran Kexue Ban”, J. Jiangxi Norm. Univ. Natur. Sci. Ed., 21:4 (1997), 289–292 | MR | Zbl
[89] Chern S.-S., “On a theorem of algebra and its geometrical applications”, J. Indian Math. Soc., 8 (1944), 29–36 | MR | Zbl
[90] Chern S.-S., “La géometrie des sous-variétés d'un espace euclidien à plusieurs dimensions”, Enseign. Math., 40 (1951–1954), 26–46 | MR
[91] Chern S.-S., Osserman R., “Remarks on the Riemannian metric of a minimal submanifold”, Geom Symp., Lect. Notes Math., 894, Springer, 1980, 49–90 | MR
[92] Cho C.-K., Han C.-K., “Comptability equations for isometric embeddings of Riemannian manifolds”, Rocky Mountain J. Math., 23:4 (1993), 1231–1252 | DOI | MR | Zbl
[93] Connely R., Servatius C., “Higher-order rigidity what is the proper definition?”, Discrete Comput. Geom., 11:2 (1994), 193–200 | DOI | MR
[94] Dajczer M., “Rigidity of hypersurfaces”, Proc. 15th Braz. Colloq. Math. Poços de Caldas (Braz, 1985), 1987, 269–272 | Zbl
[95] Dajczer M., Antonucci M., Oliveira G., Lima-Filho P., Tojeiro R., “Submanifolds and Isometric Immersions”, Math. Lect. Series, 13, Publish or Perish, Housten, 1986, 173 | MR
[96] Dajczer M., Florit L., “On conformally flat submanifolds”, Comm. Anal. Geom., 4:2 (1996), 261–284 | MR | Zbl
[97] Dajczer M., Florit L., “Euclidean conformally flat submanifolds in codimension two obtained as intersections”, Proc. Amer. Math. Soc., 127:1 (1999), 265–269. | DOI | MR | Zbl
[98] Dajczer M., Florit L., “Compositions of isometric immersions in higher codimensions”, Manuscripta Math., 105 (2001), 507–517 | DOI | MR | Zbl
[99] Dajczer M., Florit L., “Genuine deformations of submanifolds”, Comm. Anal. Geom., 12:5 (2004), 1105–1129 | MR | Zbl
[100] Dajczer M., Florit L., “Genuine rigidity of Euclidean submanifolds in codimension two”, Geom. Dedicata, 106 (2004), 195–210 | DOI | MR | Zbl
[101] Dajczer M., Florit L., Tojeiro R., “On deformable hypersurfaces in space forms”, Ann. Mat. Pura Appl., 174 (1998), 36–390 | DOI | MR
[102] Dajczer M., Gromol K., “Gauss parametrizations and rigidity aspect of submanifolds”, J. Differential Geom., 22:1 (1985), 1–12 | MR | Zbl
[103] Dajczer M., Gromol K., “Rigidity for complete Euclidean hypersurfaces”, J. Differential Geom., 31:2 (1990), 401–416 | MR | Zbl
[104] Dajczer M., Gromol K., “Isometric deformations of compact Euclidean submanifolds in codimension 2”, Duke Math. J., 79:3 (1995), 605–618 | DOI | MR | Zbl
[105] Dajczer M., Rodriguez L., “Infinitesimal rigidity of Euclidean submanifolds”, Ann. Inst. Fourier (Grenoble), 40:4 (1990), 939–949 | MR | Zbl
[106] Dajczer M., Tenenblat K., “Rigidity for complete Weingarten hypersurfaces”, Trans. Amer. Math. Soc., 312:1 (1989), 129–140 | DOI | MR | Zbl
[107] Dajczer M., Tojeiro R., “On compositions of isometric immersions”, J. Differential Geom., 36:1 (1992), 1–18 | MR | Zbl
[108] Dajczer M., Tojeiro R., “On submanifolds of two manifolds”, Math. Z., 214:3 (1993), 405–413 | DOI | MR | Zbl
[109] Darboux G., Leçons sur la théorie des surfaces et les applications géometriques du calcul infinitésimal, 4 partie, Paris, 1946, 554 pp.
[110] Do Carmo M., Dajczer M., “A rigidity theorem for higher codimension”, Math. Ann., 109 (1986), 577–583 | DOI | MR
[111] Do Carmo M., Dajczer M., “Conformal rigidity”, Amer. J. Math., 109:5 (1987), 963–985 | DOI | MR | Zbl
[112] Do Carmo M., Warner F., “Rigidity and convexity of hypersurfaces in spheres”, J. Differential Geom., 4 (1970), 133–144 | MR | Zbl
[113] Dolbeault-Lemoin S., Ann. Sci. École Norm. Sup., 3:73 (1956), 357–438 | MR | Zbl
[114] Florit L. A., “On extensions of infinitesimal deformations”, J. London Math. Soc., 53:3 (1996), 615–624 | MR | Zbl
[115] Gardner R. B., “New viewpoints in the geometry of submanifolds of $R^N$”, Bull. Amer. Math. Soc., 26:1 (1977), 1–35 | DOI | MR
[116] Goldstein R., Ryan P., “Rigidity and energy”, Global Analysis Appl., 2 (1974), 233–243 | MR
[117] Goldstein R., Ryan P., “Infinitesimal rigidity theorem for of submanifolds”, J. Differential Geom., 10:1, 2 (1975), 49–60 | MR | Zbl
[118] Hájková V., “Deformations of hypersurfaces in $R^4$”, Differential Geom. and Appl. Satellite Conf. of ICM in Brno (1998 Brno: Masaryk University), 1999, 191–194 | MR | Zbl
[119] Harle C. E., “Rigidity of hypersurface of constant scalar curvature”, Bull. Amer. Math. Soc., 76:4 (1970), 710 | DOI | MR
[120] Harle C. E., “Rigidity of hypersurface of constant scalar curvature”, J. Differential Geom., 5:12 (1971), 85–111 | MR | Zbl
[121] Ivanova-Karatopraklieva I., “Infinitesimal rigidity of hypersurfaces in Euclidean space”, Comp. Red. Acad. Bulg. Sci., 53:6 (2000), 9–12 | MR
[122] Jacobowitz H., “Implicit funcion theorems and isometric embeddings”, Ann. Math., 95:2 (1972), 191–225 | DOI | MR | Zbl
[123] Jacobowitz H., “Deformations having a hypersurface fixed”, Partial Diff. Equ. (Berkeley 1971), Proc. Sympos. Pure Math., 23, 1973, 343–351 | MR | Zbl
[124] Jacobowitz H., “Local analytic isometric deformations”, Indiana Univ. Math. J., 31:1 (1982), 47–55 | DOI | MR | Zbl
[125] Jacobowitz H., “Local isometric embeddings”, Ann. Math. Studies, 102 (1982), 381–393 | MR | Zbl
[126] Jacobowitz H., “The Gauss–Codazzi equations”, Tensor, 39 (1982), 15–22 | MR | Zbl
[127] Kaneda E., “Global rigidity of compact classical Lie groups”, Hokkaido Math. J., 14 (1985), 365–385 | MR
[128] Kaneda E., Tanaka N., “Rigidity for isometric imbeddings”, J. Math. Kyoto Univ., 18 (1978), 1–70 | MR | Zbl
[129] Killing W., Die nicht-euklidischen Raumformen in analytischer Behandlung, Teubner, Leipzig, 1885, 264 pp. | Zbl
[130] Kowalski O., “Some algebraic theorems on vector-valued forms and their geometric applications”, Colloq. Math., 26 (1972), 59–92 | MR | Zbl
[131] Kuiper N., “$C^1$-isometric imbeddings. I”, Proc. Konink. Nederl. Akad. Wetensch. A (Indag. Math.), 58:4 (1955), 545–556 | MR | Zbl
[132] Kuiper N., “$C^1$-isometric imbeddings. II”, Proc. Konink. Nederl. Akad. Wetensch. A (Indag. Math.), 58, no. 5, 1955, 683–689 | MR | Zbl
[133] Markov P., Trejos O., “Deformaciones isométricas infinitesimales de superficies multidimensionales ensambladas”, Rev. Mat. Teor. Apl., 8:1 (2001), 27–32
[134] Masatoshi K., “Isometric deformations of hypersufaces in Euclidean space preserving mean curvature”, Tôhoku Math. J., 44:3 (1992), 433–442 | DOI | MR | Zbl
[135] Matsuyama Y., “Rigidity of hypersufaces with constant mean curvature”, Tôhoku Math. J., 28 (1976), 199–203 | DOI | MR
[136] Moor J. D., “Isometric immersions of Riemannian products”, J. Differential Geom., 5:1 (1971), 159–168 | MR | Zbl
[137] Mori H., “Remarks on complete deformable hypersurfaces in $H^{n+1}$”, Indiana Math. J., 42 (1993), 361–366 | DOI | MR | Zbl
[138] Mori H., “Remarks on complete deformable hypersurfaces in $R^4$”, J. Differential Geom., 4 (1994), 1–6 | DOI | MR
[139] Nannicini A., “Rigidita infinitesima per le ipersurficie compacte fortemente convesse di $R^{n+1}$”, Bol. Unione Mat. Ital., 2 (1980), 181–194 | MR | Zbl
[140] Nash J. F., “$C^1$-isometric imbeddings”, Ann. Math., 60:3 (1954), 383–396 | DOI | MR | Zbl
[141] Nomizu K., “Uniqueness of the normal connections and congruence of isometric immersions”, Tôhoky Math. J., 28:1 (1977), 613–617 | MR
[142] Oliker V., “Some remarks on elliptic equations and infinitesimal deformations of submanifolds”, Global Differential Geometry and Global Analysis, Proc. Colloq. (Berlin, 1979), Lect. Notes Math., 838, Springer, 1981, 211–220 | MR
[143] Ros A., “Compact hypersurfaces with constant scalar curvature and a congruence theorem”, J. Differential Geom., 27:2 (1988), 215–220 | MR | Zbl
[144] Sacksteder R., “On hypersurface with no negative sectional curvatures”, Amer. J. Math., 82 (1960), 609–630 | DOI | MR | Zbl
[145] Sacksteder R., J. Math. Mech., 11:27 (1962), 929–939 | MR | Zbl
[146] Sasaki S., “A global formulation of the fundamental theorem of the theory of surfaces in three dimensional Euclidean space”, Nagoya Math. J., 13 (1958), 69–82 | MR | Zbl
[147] Sasaki S., “A proof of the fundamental theorem of hypersurfaces in a space-form”, Tensor, 24 (1972), 363–373 | MR | Zbl
[148] Sbrana U., “Sulle varietá ad $n-1$ dimensioni deformabili nello spazio euclideo ad $n$ dimensioni”, Rend. Circ. Mat. Palermo, 27 (1909), 1–45 | DOI | Zbl
[149] Silva S. L., “On isometric and conformal rigidity of submanifolds”, Pt. I, An. Acad. Brasil. Ci., 71:3 (1999), 321–325 | MR | Zbl
[150] Silva S., “On isometric and conformal rigidity of submanifolds”, Pacific J. Math., 199 (2001), 227–247 | DOI | MR | Zbl
[151] Soyuçok Z., “The problem of isometric deformations of a Euclidean hypersurface preserving mean curvature”, Bull. Tech. Univ. Istambul., 49:3–4 (1996), 551–562 | MR | Zbl
[152] Spivak M., A Comprehensive Introduction to Differential Geometry, vol. 4, Publish or Perish, Inc., Boston, Mass., 1975 | MR | Zbl
[153] Spivak M., A Comprehensive Introduction to Differential Geometry, vol. 5, Publish or Perish, Inc., Boston, Mass., 1975 | MR | Zbl
[154] S̆vec A., “On infinitesimal isometries of a hypersurface”, Czechoslovak Math. J., 24(99) (1974), 150–163 | MR
[155] S̆vec A., “On the rigidity of certain surfaces in $E^5$”, Czechoslovak Math. J., 27(102) (1977), 250–257 | MR
[156] S̆vec A., “On the equivalence of isometric surfaces in $E^4$”, Beitr. Algebra Geom., 9 (1980), 7–12 | MR
[157] S̆vec A., Global Differential Geometry of Surfaces, Berlin, 1981
[158] Szczarba R. H., “On existence and rigidity of isometric immersions”, Bull. Amer. Math. Soc., 75 (1969), 583–787 | DOI | MR
[159] Szczarba R. H., “On isometric immersions of Riemannian manifolds in Euclidean space”, Bol. Soc. Brasil Mat., 1 (1970), 31–45 | DOI | MR | Zbl
[160] Tachibana S., “On isometric deformation vector of the hypersurfaces in Riemannian manifolds”, Natur. Sci. Rep. Ochanomizu Univ., 27:1 (1976), 1–9 | MR | Zbl
[161] Tanaka N., “Rigidity for elliptic isometric embeddings”, Proc. Japan Acad., 48, 1972, 370–372 | MR | Zbl
[162] Tanaka N., “Rigidity for elliptic isometric embeddings”, Nagoya Math. J., 51 (1973), 137–160 | MR | Zbl
[163] Tenenblat K., “A rigidity theorem for there-dimensional submanifolds in Euclidean six-space”, J. Differential Geom., 14:2 (1979), 187–203 | MR | Zbl
[164] Tenenblat K., “On infinitesimal isometric deformations”, Proc. Amer. Math. Soc., 75:2 (1979), 269–275 | DOI | MR | Zbl
[165] Thomas T. Y., “Riemann spaces of class one and their characterization”, Acta Math., 67 (1936), 169–211 | DOI | MR | Zbl
[166] Vincensini P., “Sur une méthode d'application isométrique des surfaces de $E_3$ dans $E_4$”, Rev. Fac. Sci. Univ. Istanbul. Sér. A, 43 (1987), 13–27 | MR
[167] Whitt L., “Isometric homotopy and codimention-two isometric immersions of the $n$-sphere into Euclidean space”, J. Differential Geom., 14:2 (1979), 295–302 | MR | Zbl
[168] Yano K., “Sur la théorie des déformations infinitésimales”, J. Fac. Sci. Univ. Tokyo Sect. 1A Math., 6 (1949), 1–75 | MR | Zbl
[169] “Infinitesimal variations of submanifolds”, Kodai Math. J., 1 (Yano K.), 30–44 | DOI | MR