Bending of surfaces.~III
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 3-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

A survey of works on discrete and continuous rigidity/nonrigidity and infinitesimal rigidity/nonrigidity of multidimensional surfaces, mainly in Euclidean spaces, is given. As a starting point for the methods of investigation, one considers three forms of the main theorem of the theory of surfaces (in local coordinates, in the invariant form, and in terms of exterior differential forms).
@article{FPM_2006_12_1_a0,
     author = {I. Ivanova-Karatopraklieva and P. E. Markov and I. Kh. Sabitov},
     title = {Bending of {surfaces.~III}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--56},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a0/}
}
TY  - JOUR
AU  - I. Ivanova-Karatopraklieva
AU  - P. E. Markov
AU  - I. Kh. Sabitov
TI  - Bending of surfaces.~III
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 3
EP  - 56
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a0/
LA  - ru
ID  - FPM_2006_12_1_a0
ER  - 
%0 Journal Article
%A I. Ivanova-Karatopraklieva
%A P. E. Markov
%A I. Kh. Sabitov
%T Bending of surfaces.~III
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 3-56
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a0/
%G ru
%F FPM_2006_12_1_a0
I. Ivanova-Karatopraklieva; P. E. Markov; I. Kh. Sabitov. Bending of surfaces.~III. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 3-56. http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a0/

[1] Aminov Yu. A., Geometriya podmnogoobrazii, Naukova dumka, Kiev, 2002, 468 pp. | Zbl

[2] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, M., 1974, 432 pp. | MR | Zbl

[3] Borisenko A. A., “Ob izometricheskikh podmnogoobraziyakh proizvolnoi korazmernosti v evklidovom prostranstve s sovpadayuschimi grassmanovymi obrazami”, Mat. zametki, 52:4 (1992), 29–34 | MR | Zbl

[4] Borovskii Yu. E., “Vpolne integriruemye sistemy Pfaffa”, Izv. vyssh. uchebn. zaved. Matematika, 1959, no. 2, 28–40 | MR | Zbl

[5] Borovskii Yu. E., “O vpolne integriruemykh sistemakh Pfaffa”, Izv. vyssh. uchebn. zaved. Matematika, 1960, no. 1, 35–38 | MR | Zbl

[6] Borovskii Yu. E., “Teorema Bitsa dlya neregulyarnykh giperpoverkhnostei”, Sib. mat. zhurn., 4:4 (1963), 744–751 | MR | Zbl

[7] Borovskii Yu. E., “Sistemy Pfaffa s koeffitsientami iz $L_n$ i ikh geometricheskie prilozheniya”, Sib. mat. zhurn., 24:2 (1988), 10–16 | MR

[8] Burbaki N., Differentsiruemye i analiticheskie mnogoobraziya. Svodka rezultatov, M., 1975, 220 pp. | MR | Zbl

[9] Vasilev A. M., Teoriya differentsialno-geometricheskikh struktur, Izd-vo Mosk. un-ta, M., 1987, 192 pp. | MR | Zbl

[10] Vekua I. N., Obobschënnye analiticheskie funktsii, M., 1988, 510 pp. | MR | Zbl

[11] Gorzii T. A., “O lokalnoi neizgibaemosti vypuklykh giperpoverkhnostei ellipticheskogo prostranstva”, Ukr. geom. sb., 18 (1975), 49–50 | MR | Zbl

[12] Gorzii T. A., “Zhëstkost vypuklykh giperpoverkhnostei ellipticheskogo prostranstva”, Ukr. geom. sb., 18 (1976), 66–68 | MR

[13] De Ram Zh., Differentsiruemye mnogoobraziya, M., 1956, 250 pp.

[14] Dzhakobovich G., “Prodolzhennye izometricheskie vlozheniya Issledovaniya po metricheskoi teorii poverkhnostei”, Ser. Matematika. Novoe v zarubezhnoi nauke, Nauka, M., 1980, 239–263

[15] Efimov N. V., “Kachestvennye voprosy teorii deformatsii poverkhnostei”, Uspekhi mat. nauk, 3:2 (1948), 47–158 | MR | Zbl

[16] Efimov N. V., Kachestvennye voprosy teorii deformatsii poverkhnostei v malom, Tr. MIAN SSSR, 30, M.–L., 1949, 128 pp. | MR | Zbl

[17] Efimov N. V., “Nekotorye predlozheniya o zhëstkosti i neizgibaemosti”, Uspekhi mat. nauk., 7:5 (1952), 215–224 | MR | Zbl

[18] Ivanova-Karatopraklieva I., Sabitov I. Kh., “Izgibanie poverkhnostei. I”, Itogi nauki i tekhn. Ser. Probl. geometrii., 23, VINITI, M., 1991, 131–184 | MR

[19] Ivanova-Karatopraklieva I., Sabitov I. Kh., “Izgibanie poverkhnostei. II”, Tematicheskie obzory, Itogi nauki i tekhn. Ser. Sovr. mat. i eë pril., 8, VINITI, M., 1995, 108–167

[20] Kagan V. F., Osnovy teorii poverkhnostei, t. 2, OGIZ, GITTL, M., L., 1948, 407 pp. | MR | Zbl

[21] Kartan E., Geometriya rimanovykh prostranstv, M., 1936, 244 pp.

[22] Keiper N., “O $C^1$-izometrichnykh vlozheniyakh”, Matematika. Sb. perevodov, 1:2 (1957), 17–28

[23] Kim V. S., “Ob odnoznachnoi opredelënnosti dvumernykh poverkhnostei v evklidovom prostranstve”, Voprosy differentsialnoi geometrii v tselom, L., 1983, 67–74 | Zbl

[24] Klimentov S. B., “Globalnaya formulirovka osnovnoi teoremy teorii $n$-mernykh poverkhnostei v $m$-mernom prostranstve postoyannoi krivizny”, Ukr. geom. sb., 22 (1979), 64–81 | MR | Zbl

[25] Klimentov S. B., “O prodolzhenii beskonechno malykh izgibanii vysshikh poryadkov odnosvyaznoi poverkhnosti polozhitelnoi krivizny”, Mat. zametki, 36:3 (1984), 393–403 | MR | Zbl

[26] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, t. 2, M., 1981, 416 pp.

[27] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, M., 1967, 204 pp.

[28] Lizunova L. Yu, “O beskonechno malykh izgibaniyakh giperpoverkhnostei v rimanovom prostranstve”, Izv. vyssh. uchebn. zaved. Matematika, 1970, no. 3, 36–42 | MR | Zbl

[29] Luzin N. N., “Dokazatelstvo odnoi teoremy teorii izgibaniya”, Izv. AN SSSR. OTN, 1939, no. 2, 81–106 ; no. 7, 115–132 ; no. 10, 65–84 | Zbl

[30] Markov P. E., “Beskonechno malye izgibaniya dvumernoi poverkhnosti v chetyrëkhmernom ploskom prostranstve”, Ukr. geom. sb., 21 (1978), 55–72 | MR | Zbl

[31] Markov P. E., “Beskonechno malye izgibaniya nekotorykh mnogomernykh poverkhnostei”, Mat. zametki, 27:3 (1980), 469–479 | MR | Zbl

[32] Markov P. E., “Beskonechno malye izgibaniya vysshikh poryadkov mnogomernykh poverkhnostei”, Ukr. geom. sb., 25 (1982), 87–94 | Zbl

[33] Markov P. E., “Beskonechno malye izgibaniya odnogo klassa mnogomernykh poverkhnostei s kraem”, Mat. sb., 121:1 (1983), 48–59 | MR

[34] Markov P. E., “Ob odnom klasse beskonechno malykh izgibanii poverkhnostei”, Izv. SKNTs VSh, 1985, no. 4, 22–25 | Zbl

[35] Markov P. E., “Beskonechno malye izgibaniya vysshikh poryadkov mnogomernykh poverkhnostei v prostranstvakh postoyannoi krivizny”, Mat. sb., 133:1 (1987), 64–85 | Zbl

[36] Markov P. E., “O pogruzhenii metrik, blizkikh k pogruzhaemym”, Ukr. geom. sb., 35 (1992), 49–67 | MR

[37] Markov P. E., “Obschie analiticheskie i beskonechno malye deformatsii pogruzhenii. 1”, Izv. vyssh. uchebn. zaved. Matematika, 1997, no. 9, 21–34 | MR | Zbl

[38] Markov P. E., “Obschie analiticheskie i beskonechno malye deformatsii pogruzhenii. 2”, Izv. vyssh. uchebn. zaved. Matematika, 1997, no. 11, 41–51 | MR | Zbl

[39] Markov P. E., “Kriterii kongruentnosti mnogomernykh poverkhnostei v terminakh osnovnykh form”, Tezisy dokl. na Mezhdunarodnoi shkole-seminare po geometrii i analizu pamyati N. V. Efimova, Rostov-na-Donu, 1998, 50–51

[40] Markov P. E., “Tipovoe chislo i zhëstkost mnogomernykh poverkhnostei”, Mat. sb., 192:1 (2001), 67–88 | MR | Zbl

[41] Markov P. E., Shapovalova L. N., “Ob odnoi sisteme uravnenii teorii izometricheskikh pogruzhenii”, Izv. vyssh. uchebn. zaved. Severo-Kavkazskii region, 1995, no. 2, 13–17 | Zbl

[42] Mlodz'evskii B. K., Izsl'dovaniya ob' izgibanii poverkhnostei, M., 1886, 134 pp.

[43] Mur Dzh. D., “Izometricheskie pogruzheniya rimanovykh proizvedenii. Issledovaniya po metricheskoi teorii poverkhnostei”, Ser. Matematika. Novoe v zarubezhnoi nauke, Nauka, M., 1980, 264–276

[44] Nesh Dzh., “$C^1$-izometrichnye vlozheniya”, Matematika. Sb. perevodov, 1:2 (1957), 3–16

[45] Nesh Dzh., “Problema vlozhenii dlya rimanovykh mnogoobrazii”, Uspekhi mat. nauk, 26:4 (1971), 173–216 | MR

[46] Perepëlkin D. I., “Krivizna i normalnye prostranstva mnogoobraziya $V_m$ v $R_n$”, Mat. sb., 42:1 (1935), 81–120 | Zbl

[47] Pogorelov A. V., Vneshnyaya geometriya vypuklykh poverkhnostei, M., 1969, 760 pp. | MR

[48] Postnikov M. M., Lektsii po geometrii. Semestr 2. Lineinaya algebra, M., 1986, 400 pp. | MR

[49] Ryzhkov V. V., “Izgibanie poverkhnostei evklidova prostranstva $E_N$ s sokhraneniem sopryazhënnoi sistemy”, Tr. Mosk. inzhenerno-stroitelnogo in-ta, 1960, no. 8, 86–112

[50] Sabitov I. Kh., “Lokalnaya teoriya izgibanii poverkhnostei”, Itogi nauki i tekhn. Ser. Sovr. probl. matematiki. Fundamentalnye napravleniya, 48, VINITI, M., 1989, 196–270 | MR

[51] Senkin E. P., “Ob odnom svoistve izometricheskikh preobrazovanii vypuklykh poverkhnostei v prostranstve vysshego tipa izmerenii”, Ukr. geom. sb., 3 (1966), 95 | MR

[52] Senkin E. P., “Neizgibaemost vypuklykh giperpoverkhnostei”, Ukr. geom. sb., 12 (1972), 131–152 | MR

[53] Senkin E. P., “Dopolnenie k state «Neizgibaemost vypuklykh giperpoverkhnostei»”, Ukr. geom. sb., 17 (1975), 132–134 | MR

[54] Sindzh Dzh. L., Tenzornye metody v dinamike, M., 1947, 44 pp.

[55] Sobolev S. D., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1960, 255 pp.

[56] Sokolov N. P., Prostranstvennye matritsy i ikh prilozheniya, M., 1960, 300 pp. | MR

[57] Sretenskii L. N., “Ob izgibanii poverkhnostei”, Mat. sb., 36:2 (1929), 109–111

[58] Skhouten I. A., Stroik D. Dzh., Vvedenie v novye metody differentsialnoi geometrii, t. 2, M., 1948, 348 pp.

[59] Finikov S. P., Metod vneshnikh form Kartana v differentsialnoi geometrii, M., L., 1948, 432 pp. | MR | Zbl

[60] Khu Kheshen, “Ob izgibanii giperpoverkhnosti $V_m$ v evklidovom $E_{m+1}$ s sokhraneniem srednei krivizny”, Acta Math. Sinica, 6:1 (1956), 127–137 | MR

[61] Shkryl E. V., “O zhëstkosti mnogomernogo konusa”, Izv. vyssh. uchebn. zaved. Severo-Kavkazskii region, 2000, no. 4, 20–22 | Zbl

[62] Eizenkhart L. P., Rimanova geometriya, M., 1948, 316 pp.

[63] Yanenko N. N., “Geometricheskaya struktura poverkhnostei malogo tipa”, DAN SSSR, 64:5 (1949), 641–644 | MR | Zbl

[64] Yanenko N. N., “O nekotorykh neobkhodimykh kriteriyakh izgibaemosti poverkhnostei v mnogomernom evklidovom prostranstve”, DAN SSSR, 65:4 (1949), 449–452 | MR | Zbl

[65] Yanenko N. N., “Struktura izgibaemykh poverkhnostei v mnogomernom evklidovom prostranstve”, DAN SSSR, 72:5 (1950), 857–859 | MR | Zbl

[66] Yanenko N. N., “O nekotorykh proektivno-invariantnykh svoistvakh izgibaemykh poverkhnostei mnogomernogo evklidova prostranstva”, DAN SSSR, 72:6 (1950), 1025–1028 | MR | Zbl

[67] Yanenko N. N., “Beskonechno malye izgibaniya poverkhnostei mnogomernogo evklidova prostranstva i proektivno-invariantnye kharakteristiki izgibaemykh poverkhnostei”, Uspekhi mat. nauk, 7 (1952), 138–139 | Zbl

[68] Yanenko N. N., “O svyazi mezhdu metricheskimi i proektivnymi svoistvami poverkhnostei”, DAN SSSR, 82:5 (1952), 685–688 | MR | Zbl

[69] Yanenko N. N., “O klasse rimanovoi metriki”, DAN SSSR, 83:4 (1952), 533–536 | MR | Zbl

[70] Yanenko N. N., “Metriki klassa 2”, DAN SSSR, 83:5 (1952), 667–669 | MR | Zbl

[71] Yanenko N. N., “Nekotorye neobkhodimye priznaki izgibaemykh poverkhnostei $V_m$ v $(m+q)$-mernom evklidovom prostranstve”, Tr. seminara po vekt. i tenz. analizu, 9, 1952, 236–287 | MR | Zbl

[72] Yanenko N. N., “Nekotorye voprosy vlozheniya rimanovykh metrik v evklidovy prostranstva”, Uspekhi mat. nauk, 8:1 (1953), 21–100 | MR | Zbl

[73] Yanenko N. N., “K teorii vlozheniya poverkhnostei v mnogomernom evklidovom prostranstve”, Tr. MMO, 3, 1954, 89–180 | MR | Zbl

[74] Abe K., Erbacher J., “Isometric immersions with the same Gauss map”, Math. Ann., 215 (1975), 197–201 | DOI | MR | Zbl

[75] Allendoerfer C. B., “Rigidity for spaces class greater than one”, Amer. Math. J., 61:1 (1939), 633–644 | DOI | MR | Zbl

[76] Beez R., “Zur Theorie des Krümmungsmasses von Mannigfaltigkeiten höherer Ordnung”, Zeitschr. Math. Phys., 20 (1875), 423–444

[77] Beez R., “Zur Theorie des Krümmungsmasses von Mannigfaltigkeiten höherer Ordnung”, Zeitschr. Math. Phys., 21 (1876), 373–401

[78] Berger E., Bryant R., Griffiths P., “The Gauss equations and rigidity of isometric embeddings”, Duke Math. J., 50:3 (1983), 803–892 | DOI | MR | Zbl

[79] Bianchi L., Lezioni di geometria differenziale, vol. 1, Spoerri, Pisa, 1902 | Zbl

[80] Bianchi L., Lezioni di geometria differenziale, vol. 2, Spoerri, Pisa, 1903 | Zbl

[81] Bishop R. L., “An infinitesimal cylindricity theorem Tenzor”, Tensor (N.S.), 38:2 (1982), 147–153 | MR | Zbl

[82] Bleecker D., “Isometric deformations of compact hypersurfaces”, Geom. Dedicata, 64:2 (1997), 193–227 | DOI | MR | Zbl

[83] Borissenko A., “About isometric submanifolds of the arbitrary codimension with the same Grassmannian image”, Congr. Geom. (Thessaloniki, 1991), 114

[84] Bryant R., Griffiths P., Yang D., “Characteristics and existence of isometric embeddings”, Duke Math. J., 50:4 (1983), 893–994 | DOI | MR | Zbl

[85] Cartan E., “La déformation des hypersurfaces dans l'espace euclideen réel a $n$ dimensions”, Bull. Soc. Math. France, 44 (1916), 65–99 | MR | Zbl

[86] Cartan E., “Sur la possibilité de plonger un espace riemannien donné dans un espace euclideen”, Ann. Soc. Math. Polon., 6 (1927), 1–7

[87] Chen P. C., “A characterization of the catenoid”, An. Acad. Brasil. Ci., 51 (1979), 1–3 | MR | Zbl

[88] Chen F., “Isometric surfaces in $E^5$. Jiangxi Shifan Daxue Xuebao Ziran Kexue Ban”, J. Jiangxi Norm. Univ. Natur. Sci. Ed., 21:4 (1997), 289–292 | MR | Zbl

[89] Chern S.-S., “On a theorem of algebra and its geometrical applications”, J. Indian Math. Soc., 8 (1944), 29–36 | MR | Zbl

[90] Chern S.-S., “La géometrie des sous-variétés d'un espace euclidien à plusieurs dimensions”, Enseign. Math., 40 (1951–1954), 26–46 | MR

[91] Chern S.-S., Osserman R., “Remarks on the Riemannian metric of a minimal submanifold”, Geom Symp., Lect. Notes Math., 894, Springer, 1980, 49–90 | MR

[92] Cho C.-K., Han C.-K., “Comptability equations for isometric embeddings of Riemannian manifolds”, Rocky Mountain J. Math., 23:4 (1993), 1231–1252 | DOI | MR | Zbl

[93] Connely R., Servatius C., “Higher-order rigidity what is the proper definition?”, Discrete Comput. Geom., 11:2 (1994), 193–200 | DOI | MR

[94] Dajczer M., “Rigidity of hypersurfaces”, Proc. 15th Braz. Colloq. Math. Poços de Caldas (Braz, 1985), 1987, 269–272 | Zbl

[95] Dajczer M., Antonucci M., Oliveira G., Lima-Filho P., Tojeiro R., “Submanifolds and Isometric Immersions”, Math. Lect. Series, 13, Publish or Perish, Housten, 1986, 173 | MR

[96] Dajczer M., Florit L., “On conformally flat submanifolds”, Comm. Anal. Geom., 4:2 (1996), 261–284 | MR | Zbl

[97] Dajczer M., Florit L., “Euclidean conformally flat submanifolds in codimension two obtained as intersections”, Proc. Amer. Math. Soc., 127:1 (1999), 265–269. | DOI | MR | Zbl

[98] Dajczer M., Florit L., “Compositions of isometric immersions in higher codimensions”, Manuscripta Math., 105 (2001), 507–517 | DOI | MR | Zbl

[99] Dajczer M., Florit L., “Genuine deformations of submanifolds”, Comm. Anal. Geom., 12:5 (2004), 1105–1129 | MR | Zbl

[100] Dajczer M., Florit L., “Genuine rigidity of Euclidean submanifolds in codimension two”, Geom. Dedicata, 106 (2004), 195–210 | DOI | MR | Zbl

[101] Dajczer M., Florit L., Tojeiro R., “On deformable hypersurfaces in space forms”, Ann. Mat. Pura Appl., 174 (1998), 36–390 | DOI | MR

[102] Dajczer M., Gromol K., “Gauss parametrizations and rigidity aspect of submanifolds”, J. Differential Geom., 22:1 (1985), 1–12 | MR | Zbl

[103] Dajczer M., Gromol K., “Rigidity for complete Euclidean hypersurfaces”, J. Differential Geom., 31:2 (1990), 401–416 | MR | Zbl

[104] Dajczer M., Gromol K., “Isometric deformations of compact Euclidean submanifolds in codimension 2”, Duke Math. J., 79:3 (1995), 605–618 | DOI | MR | Zbl

[105] Dajczer M., Rodriguez L., “Infinitesimal rigidity of Euclidean submanifolds”, Ann. Inst. Fourier (Grenoble), 40:4 (1990), 939–949 | MR | Zbl

[106] Dajczer M., Tenenblat K., “Rigidity for complete Weingarten hypersurfaces”, Trans. Amer. Math. Soc., 312:1 (1989), 129–140 | DOI | MR | Zbl

[107] Dajczer M., Tojeiro R., “On compositions of isometric immersions”, J. Differential Geom., 36:1 (1992), 1–18 | MR | Zbl

[108] Dajczer M., Tojeiro R., “On submanifolds of two manifolds”, Math. Z., 214:3 (1993), 405–413 | DOI | MR | Zbl

[109] Darboux G., Leçons sur la théorie des surfaces et les applications géometriques du calcul infinitésimal, 4 partie, Paris, 1946, 554 pp.

[110] Do Carmo M., Dajczer M., “A rigidity theorem for higher codimension”, Math. Ann., 109 (1986), 577–583 | DOI | MR

[111] Do Carmo M., Dajczer M., “Conformal rigidity”, Amer. J. Math., 109:5 (1987), 963–985 | DOI | MR | Zbl

[112] Do Carmo M., Warner F., “Rigidity and convexity of hypersurfaces in spheres”, J. Differential Geom., 4 (1970), 133–144 | MR | Zbl

[113] Dolbeault-Lemoin S., Ann. Sci. École Norm. Sup., 3:73 (1956), 357–438 | MR | Zbl

[114] Florit L. A., “On extensions of infinitesimal deformations”, J. London Math. Soc., 53:3 (1996), 615–624 | MR | Zbl

[115] Gardner R. B., “New viewpoints in the geometry of submanifolds of $R^N$”, Bull. Amer. Math. Soc., 26:1 (1977), 1–35 | DOI | MR

[116] Goldstein R., Ryan P., “Rigidity and energy”, Global Analysis Appl., 2 (1974), 233–243 | MR

[117] Goldstein R., Ryan P., “Infinitesimal rigidity theorem for of submanifolds”, J. Differential Geom., 10:1, 2 (1975), 49–60 | MR | Zbl

[118] Hájková V., “Deformations of hypersurfaces in $R^4$”, Differential Geom. and Appl. Satellite Conf. of ICM in Brno (1998 Brno: Masaryk University), 1999, 191–194 | MR | Zbl

[119] Harle C. E., “Rigidity of hypersurface of constant scalar curvature”, Bull. Amer. Math. Soc., 76:4 (1970), 710 | DOI | MR

[120] Harle C. E., “Rigidity of hypersurface of constant scalar curvature”, J. Differential Geom., 5:12 (1971), 85–111 | MR | Zbl

[121] Ivanova-Karatopraklieva I., “Infinitesimal rigidity of hypersurfaces in Euclidean space”, Comp. Red. Acad. Bulg. Sci., 53:6 (2000), 9–12 | MR

[122] Jacobowitz H., “Implicit funcion theorems and isometric embeddings”, Ann. Math., 95:2 (1972), 191–225 | DOI | MR | Zbl

[123] Jacobowitz H., “Deformations having a hypersurface fixed”, Partial Diff. Equ. (Berkeley 1971), Proc. Sympos. Pure Math., 23, 1973, 343–351 | MR | Zbl

[124] Jacobowitz H., “Local analytic isometric deformations”, Indiana Univ. Math. J., 31:1 (1982), 47–55 | DOI | MR | Zbl

[125] Jacobowitz H., “Local isometric embeddings”, Ann. Math. Studies, 102 (1982), 381–393 | MR | Zbl

[126] Jacobowitz H., “The Gauss–Codazzi equations”, Tensor, 39 (1982), 15–22 | MR | Zbl

[127] Kaneda E., “Global rigidity of compact classical Lie groups”, Hokkaido Math. J., 14 (1985), 365–385 | MR

[128] Kaneda E., Tanaka N., “Rigidity for isometric imbeddings”, J. Math. Kyoto Univ., 18 (1978), 1–70 | MR | Zbl

[129] Killing W., Die nicht-euklidischen Raumformen in analytischer Behandlung, Teubner, Leipzig, 1885, 264 pp. | Zbl

[130] Kowalski O., “Some algebraic theorems on vector-valued forms and their geometric applications”, Colloq. Math., 26 (1972), 59–92 | MR | Zbl

[131] Kuiper N., “$C^1$-isometric imbeddings. I”, Proc. Konink. Nederl. Akad. Wetensch. A (Indag. Math.), 58:4 (1955), 545–556 | MR | Zbl

[132] Kuiper N., “$C^1$-isometric imbeddings. II”, Proc. Konink. Nederl. Akad. Wetensch. A (Indag. Math.), 58, no. 5, 1955, 683–689 | MR | Zbl

[133] Markov P., Trejos O., “Deformaciones isométricas infinitesimales de superficies multidimensionales ensambladas”, Rev. Mat. Teor. Apl., 8:1 (2001), 27–32

[134] Masatoshi K., “Isometric deformations of hypersufaces in Euclidean space preserving mean curvature”, Tôhoku Math. J., 44:3 (1992), 433–442 | DOI | MR | Zbl

[135] Matsuyama Y., “Rigidity of hypersufaces with constant mean curvature”, Tôhoku Math. J., 28 (1976), 199–203 | DOI | MR

[136] Moor J. D., “Isometric immersions of Riemannian products”, J. Differential Geom., 5:1 (1971), 159–168 | MR | Zbl

[137] Mori H., “Remarks on complete deformable hypersurfaces in $H^{n+1}$”, Indiana Math. J., 42 (1993), 361–366 | DOI | MR | Zbl

[138] Mori H., “Remarks on complete deformable hypersurfaces in $R^4$”, J. Differential Geom., 4 (1994), 1–6 | DOI | MR

[139] Nannicini A., “Rigidita infinitesima per le ipersurficie compacte fortemente convesse di $R^{n+1}$”, Bol. Unione Mat. Ital., 2 (1980), 181–194 | MR | Zbl

[140] Nash J. F., “$C^1$-isometric imbeddings”, Ann. Math., 60:3 (1954), 383–396 | DOI | MR | Zbl

[141] Nomizu K., “Uniqueness of the normal connections and congruence of isometric immersions”, Tôhoky Math. J., 28:1 (1977), 613–617 | MR

[142] Oliker V., “Some remarks on elliptic equations and infinitesimal deformations of submanifolds”, Global Differential Geometry and Global Analysis, Proc. Colloq. (Berlin, 1979), Lect. Notes Math., 838, Springer, 1981, 211–220 | MR

[143] Ros A., “Compact hypersurfaces with constant scalar curvature and a congruence theorem”, J. Differential Geom., 27:2 (1988), 215–220 | MR | Zbl

[144] Sacksteder R., “On hypersurface with no negative sectional curvatures”, Amer. J. Math., 82 (1960), 609–630 | DOI | MR | Zbl

[145] Sacksteder R., J. Math. Mech., 11:27 (1962), 929–939 | MR | Zbl

[146] Sasaki S., “A global formulation of the fundamental theorem of the theory of surfaces in three dimensional Euclidean space”, Nagoya Math. J., 13 (1958), 69–82 | MR | Zbl

[147] Sasaki S., “A proof of the fundamental theorem of hypersurfaces in a space-form”, Tensor, 24 (1972), 363–373 | MR | Zbl

[148] Sbrana U., “Sulle varietá ad $n-1$ dimensioni deformabili nello spazio euclideo ad $n$ dimensioni”, Rend. Circ. Mat. Palermo, 27 (1909), 1–45 | DOI | Zbl

[149] Silva S. L., “On isometric and conformal rigidity of submanifolds”, Pt. I, An. Acad. Brasil. Ci., 71:3 (1999), 321–325 | MR | Zbl

[150] Silva S., “On isometric and conformal rigidity of submanifolds”, Pacific J. Math., 199 (2001), 227–247 | DOI | MR | Zbl

[151] Soyuçok Z., “The problem of isometric deformations of a Euclidean hypersurface preserving mean curvature”, Bull. Tech. Univ. Istambul., 49:3–4 (1996), 551–562 | MR | Zbl

[152] Spivak M., A Comprehensive Introduction to Differential Geometry, vol. 4, Publish or Perish, Inc., Boston, Mass., 1975 | MR | Zbl

[153] Spivak M., A Comprehensive Introduction to Differential Geometry, vol. 5, Publish or Perish, Inc., Boston, Mass., 1975 | MR | Zbl

[154] S̆vec A., “On infinitesimal isometries of a hypersurface”, Czechoslovak Math. J., 24(99) (1974), 150–163 | MR

[155] S̆vec A., “On the rigidity of certain surfaces in $E^5$”, Czechoslovak Math. J., 27(102) (1977), 250–257 | MR

[156] S̆vec A., “On the equivalence of isometric surfaces in $E^4$”, Beitr. Algebra Geom., 9 (1980), 7–12 | MR

[157] S̆vec A., Global Differential Geometry of Surfaces, Berlin, 1981

[158] Szczarba R. H., “On existence and rigidity of isometric immersions”, Bull. Amer. Math. Soc., 75 (1969), 583–787 | DOI | MR

[159] Szczarba R. H., “On isometric immersions of Riemannian manifolds in Euclidean space”, Bol. Soc. Brasil Mat., 1 (1970), 31–45 | DOI | MR | Zbl

[160] Tachibana S., “On isometric deformation vector of the hypersurfaces in Riemannian manifolds”, Natur. Sci. Rep. Ochanomizu Univ., 27:1 (1976), 1–9 | MR | Zbl

[161] Tanaka N., “Rigidity for elliptic isometric embeddings”, Proc. Japan Acad., 48, 1972, 370–372 | MR | Zbl

[162] Tanaka N., “Rigidity for elliptic isometric embeddings”, Nagoya Math. J., 51 (1973), 137–160 | MR | Zbl

[163] Tenenblat K., “A rigidity theorem for there-dimensional submanifolds in Euclidean six-space”, J. Differential Geom., 14:2 (1979), 187–203 | MR | Zbl

[164] Tenenblat K., “On infinitesimal isometric deformations”, Proc. Amer. Math. Soc., 75:2 (1979), 269–275 | DOI | MR | Zbl

[165] Thomas T. Y., “Riemann spaces of class one and their characterization”, Acta Math., 67 (1936), 169–211 | DOI | MR | Zbl

[166] Vincensini P., “Sur une méthode d'application isométrique des surfaces de $E_3$ dans $E_4$”, Rev. Fac. Sci. Univ. Istanbul. Sér. A, 43 (1987), 13–27 | MR

[167] Whitt L., “Isometric homotopy and codimention-two isometric immersions of the $n$-sphere into Euclidean space”, J. Differential Geom., 14:2 (1979), 295–302 | MR | Zbl

[168] Yano K., “Sur la théorie des déformations infinitésimales”, J. Fac. Sci. Univ. Tokyo Sect. 1A Math., 6 (1949), 1–75 | MR | Zbl

[169] “Infinitesimal variations of submanifolds”, Kodai Math. J., 1 (Yano K.), 30–44 | DOI | MR