Single-axis vibratory gyroscope
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 8, pp. 149-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the principles of single-axis vibratory gyroscope operation. A mathematical model for single-mass vibratory gyroscope and some modes of its operations are considered, relations between measured values (angle of rotation or angular rate) and sensitive mass generalized coordinates are described. Some details for the forced oscillations mode used in measuring of the angular rate and for two modes of natural oscillations used in measuring of rotational angle and angular rate are described. New method for identification of anisoelasticity in single-axis vibratory gyroscope is suggested.
@article{FPM_2005_11_8_a8,
     author = {D. I. Bugrov},
     title = {Single-axis vibratory gyroscope},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {149--163},
     publisher = {mathdoc},
     volume = {11},
     number = {8},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a8/}
}
TY  - JOUR
AU  - D. I. Bugrov
TI  - Single-axis vibratory gyroscope
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 149
EP  - 163
VL  - 11
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a8/
LA  - ru
ID  - FPM_2005_11_8_a8
ER  - 
%0 Journal Article
%A D. I. Bugrov
%T Single-axis vibratory gyroscope
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 149-163
%V 11
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a8/
%G ru
%F FPM_2005_11_8_a8
D. I. Bugrov. Single-axis vibratory gyroscope. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 8, pp. 149-163. http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a8/

[1] Aleksandrov V. V., Boltyanskii V. G. i dr., Optimizatsiya dinamiki upravlyaemykh sistem, Izd-vo Mosk. un-ta, M., 2000 | Zbl

[2] Barulina M. A., Dzhashitov V. E., Pankratov V. M., “Matematicheskie modeli sistem termoregulirovaniya mikromekhanicheskikh giroskopov”, Giroskopiya i navigatsiya, 2002, no. 3(37), 48–59

[3] Bugrov D. I., Trusov A. A., “O sobstvennykh kolebaniyakh odnoosnogo vibratsionnogo giroskopa”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 2004, no. 4, 65–66

[4] Dzhashitov V. E., Lestev A. M., Pankratov V. M., Popova I. V., “Vliyanie temperaturnykh i tekhnologicheskikh faktorov na tochnost mikromekhanicheskikh giroskopov”, Giroskopiya i navigatsiya, 1999, no. 3(26), 3–16

[5] Evstifeev M. I., “Pogreshnosti mikromekhanicheskogo giroskopa na vibriruyuschem osnovanii”, Giroskopiya i navigatsiya, 2002, no. 2(37), 19–25

[6] Zhuravlev V. F., “Teoreticheskie osnovy volnovogo tverdotelnogo giroskopa (VTG)”, Izv. RAN. MTT, 1993, no. 3, 6–19

[7] Zhuravlev V. F., “Upravlyaemyi mayatnik Fuko kak model odnogo klassa svobodnykh giroskopov”, Izv. RAN. MTT, 1997, no. 6, 27–35

[8] Zhuravlev V. F., “Zadacha identifikatsii pogreshnostei obobschennogo mayatnika Fuko”, Izv. RAN. MTT, 2000, no. 5, 186–192

[9] Zhuravlev V. F., “Obobschennyi mayatnik Fuko v rezhime upravleniya uglom pretsessii”, Izv. RAN. MTT, 2002, no. 5, 3–7 | MR

[10] Zbrutskii A. V., Apostolyuk V. A., “Dinamika chuvstvitelnogo elementa mikromekhanicheskogo giroskopa s dopolnitelnoi ramkoi”, Giroskopiya i navigatsiya, 1998, no. 3(22), 13–23

[11] Kucherkov S. G., “Ispolzovanie integriruyuschikh svoistv vibratsionnogo mikromekhanicheskogo giroskopa s rezonansnoi nastroikoi pri postroenii datchika uglovoi skorosti kompensatsionnogo tipa”, Giroskopiya i navigatsiya, 2002, no. 2(37), 12–18

[12] Lestev A. M., Popova I. V., Pyatyshev E. N., Lure M. S., Semenov A. A., Evstifeev M. I., “Razrabotka i issledovanie mikromekhanicheskogo giroskopa”, Giroskopiya i navigatsiya, 1999, no. 2(25), 3–10

[13] Morozov V. M., Lineinye nestatsionarnye privodimye sistemy i ikh prilozhenie k zadacham mekhaniki upravlyaemykh sistem, Dis. $\dots$ dokt. fiz.-mat. nauk, M., 1989

[14] Peshekhonov V. G., “Giroskopy nachala XXI veka”, Chetvertyi mezhdunarodnyi aerokosmicheskii kongress IAC'2003, Sbornik tezisov (18–23 avgusta 2003 g.), Moskva, Rossiya, 466–467

[15] Barnaby R. E., Chatterton J. B., “General theory and operational characteristics of the gyrotron angular rate tachometer”, Aeronautical Eng. Review., 12:11 (1953), 31–36

[16] Foucault J. B. L., “Demonstration physique au mouvement de rotation de la terre au moyen du pendule”, C. R. Acad. Sci. Paris, 32 (1851), 135–138

[17] Friedland B., Hutton M., “Theory and error analysis of vibrating-member gyroscope”, IEEE Trans. Autom. Contr., 23:4 (1978), 545–556 | DOI | MR | Zbl

[18] Netzer E., Porat I., “A novel vibratory device for angular rate measurement”, J. Dynamic Systems, Measurement, and Control, 117 (1995), 585–591 | DOI

[19] Painter C., Shkel A., “Identification of anisoelasticity for electrostatic “trimming” of rate integrating gyroscopes”, Proc. SPIE, 2002, no. 4700, 157–168 | DOI

[20] Painter C., Shkel A., “Active structural error suppression in MEMS vibratory rate integrating gyroscopes”, IEEE Sensors J., 3:5 (2003), 595–606 | DOI

[21] Painter C., Shkel A., “Structural and thermal modeling of a $z$-axis rate integrating gyroscope”, J. Micromech. Microeng., 13 (2003), 229–237 | DOI

[22] Phani A., Seshia A., “Identification of anisoelasticity and nonproportional damping in MEMS gyroscopes”, NSTI-Nanotech., 2 (2004), 343–346

[23] Shkel A., Horowitz R., Seshia A., Park S., Howe R., “Dynamics and control of micromachined gyroscopes”, The Amer. Cont. Conf., V. 3 (San Diego, CA), 1999, 2119–2124

[24] Shkel A., Lui J., Ikei C., Zeng F.-G., “Feasibility study on a prototype of vestibular implant using MEMS gyroscopes”, IEEE Int. Conf. on Sensors (Orlando, FL, USA, June 2002), 1526–1531, Paper 55.1

[25] arXiv: /www.analogdevices.com