Neuron networks in mechatronics
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 8, pp. 81-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

An elementary introduction to the theory of artificial neuron networks is given. Principles of their structural composition are presented. Methods for the neural networks training commonly used for different levels of intellectual control of mechatronic systems are formulated and substantiated. Neuron networks approaches to typical problems of classification, digital signal processing, data compression, function interpolation and extrapolation, associative behavior, and optimization are stated.
@article{FPM_2005_11_8_a3,
     author = {Yu. F. Golubev},
     title = {Neuron networks in mechatronics},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {81--103},
     publisher = {mathdoc},
     volume = {11},
     number = {8},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a3/}
}
TY  - JOUR
AU  - Yu. F. Golubev
TI  - Neuron networks in mechatronics
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 81
EP  - 103
VL  - 11
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a3/
LA  - ru
ID  - FPM_2005_11_8_a3
ER  - 
%0 Journal Article
%A Yu. F. Golubev
%T Neuron networks in mechatronics
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 81-103
%V 11
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a3/
%G ru
%F FPM_2005_11_8_a3
Yu. F. Golubev. Neuron networks in mechatronics. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 8, pp. 81-103. http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a3/

[1] Galushkin A. I., Neirokompyutery, Kn. 3: Ucheb. posobie dlya vuzov, ed. A. I. Galushkin (red.), IPRZhR, M, 2000

[2] Gorban A. N., Rossiev D. A., Neironnye seti na personalnom kompyutere, Nauka; Sibirskaya izdatelskaya firma RAN, Novosibirsk, 1996 | MR

[3] MakKallok U. S., Pitts V., “Logicheskoe ischislenie idei, otnosyaschikhsya k nervnoi aktivnosti”, Neirokompyuter, 1992, no. 3, 4, 40–53

[4] Minskii M., Paipert S., Perseptrony, Mir, M., 1971 | Zbl

[5] Yu. V. Gulyaev, A. I. Galushkin (red.), Neirokompyutery v sistemakh obrabotki signalov, Kn. 9, Radiotekhnika, M., 2003

[6] A. I. Galushkin, Ya. Z. Tsypkin (red.), Neironnye seti: istoriya razvitiya teorii, Kn. 5: Ucheb. posobie dlya vuzov, IPRZhR, M., 2001

[7] Omatu S., Khalid M., Yusof R., Neiroupravlenie i ego prilozheniya, eds. A. I. Galushkin, V. A. Ptichkin, IPRZhR, M., 2000

[8] Rozenblatt F., Printsipy neirodinamiki. Pertseptron i teoriya mekhanizmov mozga, Mir, M., 1965

[9] Terekhov V. A., Efimov D. V., Tyukin I. Yu., Neirosetevye sistemy upravleniya, Kn. 8: Ucheb. posobie dlya vuzov, ed. A. I. Galushkin (red.), IPRZhR, M., 2002

[10] Anderson J. A., “A simple neural network generating an interactive memory”, Math. Biosci., 14 (1972), 197–220 | DOI | Zbl

[11] Grossberg S., “Adaptive pattern classification and universal recoding. I: Parallel development and coding of neural feature detectors”, Biol. Cybernet, 23 (1976), 121–134 | DOI | MR | Zbl

[12] Hagan M. T., Demuth H. B., Beal M. H., Neural Network Design, PWS, Boston, 1995

[13] Hebb D. O., The Organization of Behavior: A Neuropsychological Theory, Wiley, New York, 1949

[14] Hopfield J. J., “Neural networks and phisical systems with emergent collective computational abilities”, Proc. Nat. Acad. Sci. U.S.A., 79 (1982), 2554–2558 | DOI | MR

[15] Kohonen T., “Correlation matrix memories”, IEEE Trans. Comput., 21 (1972), 353–359 | DOI | Zbl

[16] Kohonen T., Self-Organization and Associative Memory, Springer, Berlin, 1987 | Zbl

[17] Rumelhart D. E., McClelland J. L. (eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, V. 1, MIT Press, Cambridge, 1986

[18] Rosenblatt F., “The perceptron: A probabilistic model for information storage and organization in the brain”, Psychological Review, 65 (1958), 386–408 | DOI | MR

[19] Widrow B., Hoff M. E., “Adaptive switching circuits”, 1960 IRE WESCON Convention Record, Part 4, IRE, New York, 1960, 96–104

[20] Widrow B., Lehr M. A., “30 years of adaptive neural networks: Perceptron, Madaline, and backpropagation”, Proc. IEEE, 78 (1990), 1415–1441 | DOI