Stabilization of a~platform under wind loads
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 7, pp. 97-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Steward platform is employed in dynamic imitation of a number of controlled mechanical systems, in control of the active surface of a telescope mirror, and other constructions. Position and orientation of this platform is regulated by changing the lengths of its supporting bars, and corresponding change of their angles relative to the base. Viable motions of the platform depend on how the bars are hinged to the base and to the platform. This paper studies dynamics and stabilization of a platform leaning on three bars of controlled length under wind loads. This problem is of interest for design of active mirror surfaces of radio telescopes.
@article{FPM_2005_11_7_a8,
     author = {V. V. Aleksandrov and B. Ya. Lokshin and L. Gomez Esparza and H. A. Salazar Ibarguen},
     title = {Stabilization of a~platform under wind loads},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {97--115},
     publisher = {mathdoc},
     volume = {11},
     number = {7},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_7_a8/}
}
TY  - JOUR
AU  - V. V. Aleksandrov
AU  - B. Ya. Lokshin
AU  - L. Gomez Esparza
AU  - H. A. Salazar Ibarguen
TI  - Stabilization of a~platform under wind loads
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 97
EP  - 115
VL  - 11
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_7_a8/
LA  - ru
ID  - FPM_2005_11_7_a8
ER  - 
%0 Journal Article
%A V. V. Aleksandrov
%A B. Ya. Lokshin
%A L. Gomez Esparza
%A H. A. Salazar Ibarguen
%T Stabilization of a~platform under wind loads
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 97-115
%V 11
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_7_a8/
%G ru
%F FPM_2005_11_7_a8
V. V. Aleksandrov; B. Ya. Lokshin; L. Gomez Esparza; H. A. Salazar Ibarguen. Stabilization of a~platform under wind loads. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 7, pp. 97-115. http://geodesic.mathdoc.fr/item/FPM_2005_11_7_a8/

[1] Aleksandrov V. V., Voronin L. I., Glazkov Yu. N., Ishlinskii A. Yu., Sadovnichii V. A., Matematicheskie zadachi imitatsii aerokosmicheskikh polëtov, Izd-vo Mosk. un-ta, M., 1995 | Zbl

[2] Aleksandrov V. V., Sadovnichii V. A., Chugunov O. D., Matematicheskie zadachi dinamicheskoi imitatsii poleta, Izd-vo Mosk. un-ta, M., 1986

[3] Andreev Yu. N., Upravlenie konechnomernymi lineinymi ob'ektami, Nauka, M., 1976 | MR

[4] V. V. Aleksandrov (red.), Zadacha Bulgakova o maksimalnom otklonenii i eë primenenie, Izd-vo Mosk. un-ta, M., 1993 | MR

[5] Lokshin B. Ya., Privalov V. A., Samsonov V. A., Vvedenie v zadachu o dvizhenii tela v soprotivlyayuscheisya srede, Izd-vo Mosk. un-ta, M., 1986

[6] Tabachnikov V. G., “Statsionarnye kharakteristiki krylev na malykh skorostyakh vo vsekh diapazonakh uglov ataki”, Tr. TsAGI, 1621, 1974, 79–93

[7] Alexandrov V. V., Salazar H., Guerra L., Sobolevskaya I. N., Trifonova A. V., “Stabilization of relative position of Stewart platforms”, Mathematical Modeling of Complex Information Processing Systems, Moscow University Press, Moscow, 2001, 71–83

[8] Stewart D. A., “Platform with six degrees of freedom”, Proc. Inst. Mech. Eng., 180 (1965–1966), 371–386, part 1 | DOI