Phenomenological model of interaction of plate with a~flow
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 7, pp. 43-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, a finite dimensional phenomenological model of unsteady interaction of a rigid plate with a flow is proposed. It is assumed that the plate performs translational motion across the flow. The internal dynamics of the flow is modeled by the attached second order dynamical system. It is shown that the model allows satisfactory agreement with experimental data. With the developed model an inverse problem of dynamics is examined for the situation, where the plate performing uniform translational motion at some moment begins uniform deceleration and finally stops. It is shown that for sufficiently large value of the plate acceleration for some time range the flow does not resist the motion of the plate, but “accelerates” it. It is shown also that the equations of motion in the context of the proposed model can be reduced to the integro-differential form, and comparison with the known model of S. M. Belotserkovsky is performed. Structural resemblance of the motion equations for body in flow in both models is marked. The domain of applicability of the quasi-stationary model is examined.
@article{FPM_2005_11_7_a5,
     author = {V. A. Samsonov and Yu. D. Seliutski},
     title = {Phenomenological model of interaction of plate with a~flow},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {43--62},
     publisher = {mathdoc},
     volume = {11},
     number = {7},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_7_a5/}
}
TY  - JOUR
AU  - V. A. Samsonov
AU  - Yu. D. Seliutski
TI  - Phenomenological model of interaction of plate with a~flow
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 43
EP  - 62
VL  - 11
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_7_a5/
LA  - ru
ID  - FPM_2005_11_7_a5
ER  - 
%0 Journal Article
%A V. A. Samsonov
%A Yu. D. Seliutski
%T Phenomenological model of interaction of plate with a~flow
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 43-62
%V 11
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_7_a5/
%G ru
%F FPM_2005_11_7_a5
V. A. Samsonov; Yu. D. Seliutski. Phenomenological model of interaction of plate with a~flow. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 7, pp. 43-62. http://geodesic.mathdoc.fr/item/FPM_2005_11_7_a5/

[1] Belotserkovskii S. M., Kochetkov Yu. A., Loktev B. E., Tomshin V. M., “Lineinye i kvazilineinye zadachi dinamiki zhestkogo apparata s otklonyayuschimisya rulyami”, Trudy VVIA im. Zhukovskogo, 1302, 1971, 110–146

[2] Belotserkovskii S. M., Skripach B. K., Tabachnikov V. G., Krylo v nestatsionarnom potoke gaza, Nauka, M., 1971

[3] Grebeshov E. P., Shakarvene E. P., “Nestatsionarnye kharakteristiki trekh pryamougolnykh krylev razlichnogo udlineniya”, Trudy TsAGI, 2485, 1989, 3–31

[4] Makhortykh G. V., Scheglova M. G., “Eksperimentalnoe issledovanie koeffitsientov proizvodnykh normalnoi sily pryamougolnykh krylev pri postupatelnykh kolebaniyakh”, Uchenye zapiski TsAGI, 21:1 (1990), 11–20

[5] Samsonov V. A., Selyutskii Yu. D., O vozmozhnosti ucheta inertsionnykh svoistv potoka sredy, vozdeistvuyuschei na telo, Izd-vo Mosk. un-ta, M., 2000

[6] Samsonov V. A., Selyutskii Yu. D., “K zadache o kolebaniyakh plastiny v potoke soprotivlyayuscheisya sredy”, Izbrannye trudy Mezhdunarodnoi konferentsii “III Polyakhovskie chteniya”, SPb., 2003, 220–225

[7] Selyutskii Yu. D., “Ob inertsionnykh svoistvakh sredy, vozdeistvuyuschei na tverdoe telo”, Tezisy dokladov mezhdunarodnoi konferentsii “Sovremennye problemy aerokosmicheskoi nauki i tekhniki”, Zhukovskii, 2000, 217

[8] Selyutskii Yu. D., Fenomenologicheskaya model ucheta inertsionnykh svoistv potoka sredy, vozdeistvuyuschei na tverdoe telo, Dis.$\dots$ kand. fiz.-mat. nauk, M., 2001

[9] Selyutskii Yu. D., “O kolebaniyakh plastiny v potoke soprotivlyayuscheisya sredy”, Trudy konferentsii-konkursa molodykh uchenykh Instituta mekhaniki MGU, 2002, 79–84

[10] Ericsson L. E., Reding J. P., “Dynamic stall analysis in light of recent numerical and experimental results”, AIAA, 1975., Paper No75-26

[11] Liiva J., “Unsteady aerodynamic and stall effects on helicopter rotor blade airfoil sections”, J. Aircraft, 6:1 (1969), 46–51 | DOI