Bounds for exponential sums modulo~$p^2$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 6, pp. 81-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider exponential sums over subgroups $G\subset\mathbb Z_q^*$. Using Stepanov's method, we obtain nontrivial bounds for exponential sums in the case, where $q$ is a square of a prime number.
@article{FPM_2005_11_6_a9,
     author = {Yu. V. Malykhin},
     title = {Bounds for exponential sums modulo~$p^2$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {81--94},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a9/}
}
TY  - JOUR
AU  - Yu. V. Malykhin
TI  - Bounds for exponential sums modulo~$p^2$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 81
EP  - 94
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a9/
LA  - ru
ID  - FPM_2005_11_6_a9
ER  - 
%0 Journal Article
%A Yu. V. Malykhin
%T Bounds for exponential sums modulo~$p^2$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 81-94
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a9/
%G ru
%F FPM_2005_11_6_a9
Yu. V. Malykhin. Bounds for exponential sums modulo~$p^2$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 6, pp. 81-94. http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a9/

[1] Karatsuba A. A., “Drobnye doli spetsialnogo vida”, Izv. RAN. Ser. mat., 59:4 (1995), 61–80 | MR | Zbl

[2] Karatsuba A. A., “Dvoinye summy Kloostermana”, Mat. zametki, 66:5 (1999), 682–687 | MR | Zbl

[3] Konyagin S. V., “Otsenki trigonometricheskikh summ po podgruppam i summ Gaussa”, IV Mezhdunarodnaya konferentsiya “Sovremennye problemy teorii chisel i eë prilozheniya”. Aktualnye problemy, Chast III, M., 2002, 86–114 | MR | Zbl

[4] Korobov N. M., Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1984 | MR

[5] Stepanov S. A., “O chisle tochek giperellipticheskoi krivoi nad prostym konechnym polem”, Izv. AN SSSR. Ser. mat., 33 (1969), 1171–1181 | MR | Zbl

[6] Shparlinskii I. E., “Ob otsenkakh summ Gaussa”, Mat. zametki, 50:1 (1991), 122–130 | MR | Zbl

[7] Bourgain J., Exponential sum estimates over subgroups of $\mathbb Z_q^*$, $q$ arbitrary, Preprint | MR

[8] Bourgain J., Konyagin S., “Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order”, C. R. Math. Acad. Sci. Paris, 337 (2003), 75–80 | MR | Zbl

[9] Heath-Brown D. R., “An estimate for Heilbronn's exponential sum”, Analytic Number Theory, Proc. Conf. in Honor of Heini Halberstam, Birkhäuser, Boston, 1996, 451–463 | MR | Zbl

[10] Heath-Brown D. R., Konyagin S. V., “New bounds for Gauss sums derived from $k^{\text{th}}$ powers, and for Heilbronn's exponential sums”, Quart J. Math., 51 (2000), 221–235 | DOI | MR | Zbl

[11] Konyagin S., Shparlinski I., Character Sums with Exponential Functions, Cambridge University Press, Cambridge, 1999 | MR | Zbl