Siegel--Shidlovsky method in $p$-adic domain
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 6, pp. 221-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a review of the arithmetic properties of $F$-series.
@article{FPM_2005_11_6_a17,
     author = {V. G. Chirskii},
     title = {Siegel--Shidlovsky method in $p$-adic domain},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {221--230},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a17/}
}
TY  - JOUR
AU  - V. G. Chirskii
TI  - Siegel--Shidlovsky method in $p$-adic domain
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 221
EP  - 230
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a17/
LA  - ru
ID  - FPM_2005_11_6_a17
ER  - 
%0 Journal Article
%A V. G. Chirskii
%T Siegel--Shidlovsky method in $p$-adic domain
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 221-230
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a17/
%G ru
%F FPM_2005_11_6_a17
V. G. Chirskii. Siegel--Shidlovsky method in $p$-adic domain. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 6, pp. 221-230. http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a17/

[1] Galochkin A. I., “Ob algebraicheskoi nezavisimosti znachenii funktsii v nekotorykh transtsendentnykh tochkakh”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 1970, no. 5, 58–63 | Zbl

[2] Matveev E. M., “Lineinye formy ot znachenii $G$-funktsii i diofantovy uravneniya”, Mat. sb., 117(159):3 (1982), 379–396 | MR | Zbl

[3] Salikhov V. Kh., “Formalnye resheniya lineinykh differentsialnykh uravnenii i ikh primenenie v teorii transtsendentnykh chisel”, Tr. MMO, 51, 1988, 223–256 | Zbl

[4] Salikhov V. Kh., “Neprivodimost gipergeometricheskikh uravnenii i algebraicheskaya nezavisimost znachenii $E$-funktsii”, Acta Arith., 53 (1990), 453–471 | MR | Zbl

[5] Chirskii V. G., “O netrivialnykh globalnykh sootnosheniyakh”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 1989, no. 5, 33–36 | MR

[6] Chirskii V. G., “O globalnykh sootnosheniyakh”, Mat. zametki, 48:2 (1990), 123–127 | MR | Zbl

[7] Shidlovskii A. B., Transtsendentnye chisla, Nauka, M., 1987 | MR

[8] André Y., $G$-Functions and Geometry, Aspects of Mathematics, 13, Friedr. Vieweg Sohn, Braunschweig, 1989 | MR | Zbl

[9] André Y., “Séries Gevrey de type arithmétique. II: Transcendance sans transcendance”, Ann. Math., 151 (2000), 741–756 | DOI | MR | Zbl

[10] Bertrand D., “On André's proof of the Siegel–Shidlovsky theorem”, Publ. Keio Univ., 27 (1999), 51–63 | MR

[11] Bertrand D., Beukers F., “Equations différentielles linéaires et majorations de multiplicités”, Ann. Sci. École Norm. Sup., 18 (1985), 181–192 | MR | Zbl

[12] Bertrand D., Chirskii V., Yebbou J., “Effective estimates for global relations on Euler-type series”, Ann. Fac. Sci. Toulouse Math., XIII:2 (2004), 241–260 | MR | Zbl

[13] Bombieri E., “On $G$-functions”, Symp. Durham 1979, V. 2, Academic Press, London, 1981, 1–67 | MR

[14] Chudnovsky G. V., “On applications of Diophantine approximations”, Proc. Nat. Acad. Sci. U.S.A., 81 (1985), 7261–7265 | DOI | MR

[15] Flicker Yu., “On $p$-adic $G$-functions”, J. London Math. Soc., 15:3 (1977), 395–402 | DOI | MR | Zbl

[16] Siegel C. L., “Über einige Anwendungen Diophantischer Approximationen”, Abh. Preuss. Akad. Wiss., Phys.-Math. Kl., 1929, no. 1, 1–70 | Zbl

[17] Yebbou J., “Calcul de facteurs déterminants”, J. Differential Equations, 72 (1988), 140–148 | DOI | MR | Zbl