On a~measure of algebraic independence of values of Jacobi elliptic functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 6, pp. 209-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, an estimate for the measure of algebraic independence is proved for values of the Jacobi elliptic function $\operatorname{sn}(z)$ at different algebraic points.
@article{FPM_2005_11_6_a16,
     author = {Ya. M. Kholyavka},
     title = {On a~measure of algebraic independence of values of {Jacobi} elliptic functions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {209--219},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a16/}
}
TY  - JOUR
AU  - Ya. M. Kholyavka
TI  - On a~measure of algebraic independence of values of Jacobi elliptic functions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 209
EP  - 219
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a16/
LA  - ru
ID  - FPM_2005_11_6_a16
ER  - 
%0 Journal Article
%A Ya. M. Kholyavka
%T On a~measure of algebraic independence of values of Jacobi elliptic functions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 209-219
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a16/
%G ru
%F FPM_2005_11_6_a16
Ya. M. Kholyavka. On a~measure of algebraic independence of values of Jacobi elliptic functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 6, pp. 209-219. http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a16/

[1] Gurvits A., Kurant R., Teoriya funktsii, Nauka, M., 1968 | MR

[2] Zariskii O., Samyuel P., Kommutativnaya algebra, T. 1, 2, Izd. inostr. lit., M., 1963

[3] Nesterenko Yu. V., “Otsenki poryadkov nulei funktsii odnogo klassa i ikh prilozhenie v teorii transtsendentnykh chisel”, Izv. AN SSSR. Ser. mat., 41:2 (1977), 253–284 | MR | Zbl

[4] Nesterenko Yu. V., “Ob algebraicheskoi nezavisimosti algebraicheskikh stepenei algebraicheskikh chisel”, Mat. sb., 123(165):4 (1984), 435–459 | MR | Zbl

[5] Nesterenko Yu. V., “Otsenki kharakteristicheskoi funktsii prostogo ideala”, Mat. sb., 123(165):1 (1984), 11–34 | MR | Zbl

[6] Nesterenko Yu. V., “O mere algebraicheskoi nezavisimosti znachenii nekotorykh funktsii”, Mat. sb., 128(170):4 (1985), 545–568 | MR | Zbl

[7] Nesterenko Yu. V., “O mere algebraicheskoi nezavisimosti znachenii ellipticheskikh funktsii v algebraicheskikh tochkakh”, Uspekhi mat. nauk, 40:4 (1985), 221–222 | MR | Zbl

[8] Nesterenko Yu. V., “O stepeni transtsendentnosti nekotorykh polei, porozhdennykh znacheniyami eksponentsialnoi funktsii”, Mat. zametki, 46:3 (1989), 40–49 | MR

[9] Nesterenko Yu. V., “O mere algebraicheskoi nezavisimosti znachenii ellipticheskoi funktsii”, Izv. RAN. Ser. mat., 59:4 (1995), 155–178 | MR | Zbl

[10] Nesterenko Yu. V., “O mere algebraicheskoi nezavisimosti znachenii funktsii Ramanudzhana”, Trudy Mat. in-ta im. V. A. Steklova, 218, 1997, 299–334 | MR | Zbl

[11] Uitteker E. E., Vatson Dzh. N., Kurs sovremennogo analiza, T. 2, Fizmatgiz, M., 1963

[12] Shidlovskii A. B., Transtsendentnye chisla, Nauka, M., 1987 | MR

[13] Chudnovsky G. V., “Algebraic independence of the values of elliptic functions at algebraic points; Elliptic analogue of the Lindemann–Weierschtrass theorem”, Invent. Math., 61 (1980), 267–290 | DOI | MR | Zbl

[14] Chudnovsky G. V.,, Contributions to the Theory of Transcendental Numbers, AMS Math. Surveys Monographs, 19, AMS, Providence, 1984 | MR | Zbl

[15] Fel'dman N. I., Nesterenko Yu. V., Transcendental Numbers, Springer, 1998 | MR

[16] Nesterenko Yu. V., Philippon P. (eds.), Introduction to Algebraic Independence Theory, Lect. Notes Math., 1752, Springer, 2001 | MR | Zbl

[17] Jabbouri E. M., “Mesures d'independance algébrique de valeurs de fonctions elliptiques et abéliennes”, C. R. Acad. Sci. Paris. Sér. 1, 303:9 (1986), 375–378 | MR | Zbl

[18] Masser D., Elliptic Functions and Transcendence, Lect. Notes Math., 437, Springer, 1975 | MR | Zbl

[19] Masser D. W., Wüstholz G., “Fields of large transcendence degree generated by values of elliptic functions”, Invent. Math., 72 (1983), 407–464 | DOI | MR | Zbl

[20] Nesterenko Yu. V., “On a measure of algebraic independence of the values of elliptic functions”, Diophantine Approximations and Transcendental Numbers, Proceedings of the Colloquium C.I.R.M. (Lumini, 1990), ed. P. Philippon, Walter de Gruyter, Berlin, 1992, 239–248 | MR

[21] Philippon P., “Varietes abeliennes et independance algebrique”, Invent. Math., 72 (1983), 389–405 | DOI | MR | Zbl

[22] Ramachandra K., “Contributions to the theory of transcendental numbers, II”, Acta Arith., XIV (1968), 73–88 | MR | Zbl

[23] Reyssat E., “Approximation algebrique de nombres lies aux fonctions elliptique et exp”, Bull. Soc. Math. France, 1980, no. 1, 47–79 | MR | Zbl

[24] Wüstholz G., “Über das abelsche Analogon des Lindemannschen Satzes”, Invent. Math., 72 (1983), 363–388 | DOI | MR | Zbl

[25] Wüstholz G., “Recent progress in transcendence theory”, Number Theory, Lect. Notes Math., 1068, Springer, Berlin, 1984, 280–296 | MR