@article{FPM_2005_11_5_a9,
author = {G. Lippner and A. Sz\'{u}cs},
title = {A~new proof of the {Herbert} multiple-point formula},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {107--116},
year = {2005},
volume = {11},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a9/}
}
G. Lippner; A. Szűcs. A new proof of the Herbert multiple-point formula. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 107-116. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a9/
[1] Kazaryan M., “Multiosobennosti, kobordizmy i ischislitelnaya geometriya”, Uspekhi mat. nauk, 58:4 (2003), 29–88 | MR | Zbl
[2] Kazaryan M., Domashnyaya stranitsa v Internete:, http://www.mi.ras.ru/~kazarian
[3] Herbert R. J., Multiple points of immersed manifolds, Thesis, University of Minnesota, 1975 | MR
[4] Rimányi R., “Thom polynomials, symmetries and incidences of singularities”, Invent. Math., 143 (2001), 499–521 | DOI | MR | Zbl
[5] Rimányi R., Szűcs A., “Generalized Pontryagin–Thom construction for maps with singlarities”, Topology, 37 (1998), 1177–1191 | DOI | MR | Zbl
[6] Ronga F., “On multiple points of smooth immersions”, Comment. Math. Helv., 55 (1980), 521–527 | DOI | MR | Zbl
[7] Szűcs A., “Cobordism groups of l-immersions, I”, Acta Math. Acad. Sci. Hungar, 27 (1976), 343–358 | DOI | MR
[8] Szűcs A., “Cobordism groups of l-immersions, II”, Acta Math. Acad. Sci. Hungar, 28 (1976), 93–102 | DOI | MR
[9] Szűcs A., “Cobordism groups of immersions with restricted self-intersection”, Osaka J. Math., 21 (1984), 71–80 | MR
[10] Szűcs A., “Cobordism of immersions and singular maps, loop spaces and multiple points”, Geometric and Algebraic Topology, Banach Center Publications, 18, PWN, Warsaw, 1986, 239–253 | MR