A~new proof of the Herbert multiple-point formula
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 107-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the Herbert multiple-point formula modulo 2-torsion using the method of the universal immersion.
@article{FPM_2005_11_5_a9,
     author = {G. Lippner and A. Sz\'{u}cs},
     title = {A~new proof of the {Herbert} multiple-point formula},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {107--116},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a9/}
}
TY  - JOUR
AU  - G. Lippner
AU  - A. Szűcs
TI  - A~new proof of the Herbert multiple-point formula
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 107
EP  - 116
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a9/
LA  - ru
ID  - FPM_2005_11_5_a9
ER  - 
%0 Journal Article
%A G. Lippner
%A A. Szűcs
%T A~new proof of the Herbert multiple-point formula
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 107-116
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a9/
%G ru
%F FPM_2005_11_5_a9
G. Lippner; A. Szűcs. A~new proof of the Herbert multiple-point formula. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 107-116. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a9/

[1] Kazaryan M., “Multiosobennosti, kobordizmy i ischislitelnaya geometriya”, Uspekhi mat. nauk, 58:4 (2003), 29–88 | MR | Zbl

[2] Kazaryan M., Domashnyaya stranitsa v Internete:, http://www.mi.ras.ru/~kazarian

[3] Herbert R. J., Multiple points of immersed manifolds, Thesis, University of Minnesota, 1975 | MR

[4] Rimányi R., “Thom polynomials, symmetries and incidences of singularities”, Invent. Math., 143 (2001), 499–521 | DOI | MR | Zbl

[5] Rimányi R., Szűcs A., “Generalized Pontryagin–Thom construction for maps with singlarities”, Topology, 37 (1998), 1177–1191 | DOI | MR | Zbl

[6] Ronga F., “On multiple points of smooth immersions”, Comment. Math. Helv., 55 (1980), 521–527 | DOI | MR | Zbl

[7] Szűcs A., “Cobordism groups of l-immersions, I”, Acta Math. Acad. Sci. Hungar, 27 (1976), 343–358 | DOI | MR

[8] Szűcs A., “Cobordism groups of l-immersions, II”, Acta Math. Acad. Sci. Hungar, 28 (1976), 93–102 | DOI | MR

[9] Szűcs A., “Cobordism groups of immersions with restricted self-intersection”, Osaka J. Math., 21 (1984), 71–80 | MR

[10] Szűcs A., “Cobordism of immersions and singular maps, loop spaces and multiple points”, Geometric and Algebraic Topology, Banach Center Publications, 18, PWN, Warsaw, 1986, 239–253 | MR