On $\mathrm{SL}(3,\mathbb{R})$-actions on $4$-spheres
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 99-105
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a natural, continuous $\mathrm{SL}(3,\mathbb{R})$-action on $S^{4}$ which is an extension of the $\mathrm{SO}(3)$-action $\psi$ of Uchida. The construction is based on the Kuiper theorem asserting that the quotient space of $\mathbb{C}P(2)$ by complex conjugation is $S^{4}$. We also give a new proof of the Kuiper theorem.
@article{FPM_2005_11_5_a8,
author = {Sh. Kuroki},
title = {On $\mathrm{SL}(3,\mathbb{R})$-actions on $4$-spheres},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {99--105},
publisher = {mathdoc},
volume = {11},
number = {5},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a8/}
}
Sh. Kuroki. On $\mathrm{SL}(3,\mathbb{R})$-actions on $4$-spheres. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 99-105. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a8/