On $\mathrm{SL}(3,\mathbb{R})$-actions on $4$-spheres
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 99-105

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a natural, continuous $\mathrm{SL}(3,\mathbb{R})$-action on $S^{4}$ which is an extension of the $\mathrm{SO}(3)$-action $\psi$ of Uchida. The construction is based on the Kuiper theorem asserting that the quotient space of $\mathbb{C}P(2)$ by complex conjugation is $S^{4}$. We also give a new proof of the Kuiper theorem.
@article{FPM_2005_11_5_a8,
     author = {Sh. Kuroki},
     title = {On $\mathrm{SL}(3,\mathbb{R})$-actions on $4$-spheres},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {99--105},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a8/}
}
TY  - JOUR
AU  - Sh. Kuroki
TI  - On $\mathrm{SL}(3,\mathbb{R})$-actions on $4$-spheres
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 99
EP  - 105
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a8/
LA  - ru
ID  - FPM_2005_11_5_a8
ER  - 
%0 Journal Article
%A Sh. Kuroki
%T On $\mathrm{SL}(3,\mathbb{R})$-actions on $4$-spheres
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 99-105
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a8/
%G ru
%F FPM_2005_11_5_a8
Sh. Kuroki. On $\mathrm{SL}(3,\mathbb{R})$-actions on $4$-spheres. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 99-105. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a8/