Classification of Heegaard diagrams of genus three
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 91-97
Cet article a éte moissonné depuis la source Math-Net.Ru
We present a classification of the Heegaard diagram of genus 3 and an example of an infinite series of diagrams, which have the same type modeled on the one-dimensional skeleton of the octahedron.
@article{FPM_2005_11_5_a7,
author = {F. Korablev},
title = {Classification of {Heegaard} diagrams of genus three},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {91--97},
year = {2005},
volume = {11},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a7/}
}
F. Korablev. Classification of Heegaard diagrams of genus three. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 91-97. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a7/
[1] Volodin I. A., Kuznetsov V. E., Fomenko A. T., “O probleme algoritmicheskogo raspoznavaniya standartnoi trekhmernoi sfery”, Uspekhi mat. nauk, 29:5 (1974), 71–168 | MR | Zbl
[2] Matveev S. V., Fomenko A. T., Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, Izd-vo Mosk un-ta, M., 1991 | MR | Zbl
[3] Homma T., Ochiai M., Takahashi M., “An algorithm for recognizing $S^3$ in $3$-manifolds with Heegaard splittings of genus two”, Osaka J. Math., 17 (1990), 625–648 | MR