Partition of Euclidean space into polyhedra induced by a small deformation of the densest lattice sphere packing
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 79-84
Cet article a éte moissonné depuis la source Math-Net.Ru
The number of combinatorially nonequivalent Dirichlet–Voronoi diagrams constructed for the centers of balls in the packing obtained from the densest lattice packing of equal spheres by a small displacement of the spheres is estimated.
@article{FPM_2005_11_5_a5,
author = {A. M. Gurin},
title = {Partition of {Euclidean} space into polyhedra induced by a~small deformation of the densest lattice sphere packing},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {79--84},
year = {2005},
volume = {11},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a5/}
}
TY - JOUR AU - A. M. Gurin TI - Partition of Euclidean space into polyhedra induced by a small deformation of the densest lattice sphere packing JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2005 SP - 79 EP - 84 VL - 11 IS - 5 UR - http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a5/ LA - ru ID - FPM_2005_11_5_a5 ER -
A. M. Gurin. Partition of Euclidean space into polyhedra induced by a small deformation of the densest lattice sphere packing. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 79-84. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a5/
[1] Gilbert D., Kon-Fossen S., Naglyadnaya geometriya, Nauka, M., 1981 | MR
[2] Gurin A. M., Mat. fizika, analiz, geometriya, 2, no. 2, 1995
[3] Gurin A. M., “Odno svoistvo indutsirovannogo upakovkoi kompaktnykh tel normalnogo razbieniya prostranstva na mnogogranniki”, Geometriya i topologiya. 8, Zap. nauch. semin. POMI, 299, SPb., 2003, 38–41 | MR
[4] Engel P., Vpliv naukovogo dorobku G. Voronogo na suchasnu nauku, eds. G. Sita, A. Yurachkivskii, Institut matematiki, Kiiv, 2003
[5] Conway J. H., Sloane N. J. A., Sphere Packings: Lattices and Groups, V. 1, Springer, New York, 1988 | MR
[6] Hilbert D., Gesammelte Abhandlungen, V. 3, Springer, Berlin, 1935, 290–329 | Zbl