Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2005_11_5_a4, author = {Huynh Vu and Le Tu Quoc Thang}, title = {On the colored {Jones} polynomial and the {Kashaev} invariant}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {57--78}, publisher = {mathdoc}, volume = {11}, number = {5}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a4/} }
Huynh Vu; Le Tu Quoc Thang. On the colored Jones polynomial and the Kashaev invariant. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 57-78. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a4/
[1] Kassel K., Kvantovye gruppy, Fazis, M., 1999
[2] Khamfris Dzh., Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003
[3] Bar-Natan D., Garoufalidis S.,, “On the Melvin–Morton–Rozansky conjecture”, Invent. Math., 125:1 (1996), 103–133 | DOI | MR | Zbl
[4] Benedetti R., Petronio C., Lectures on Hyperbolic Geometry, Springer, Berlin, 1992 | MR | Zbl
[5] Birman J., Braids, Links, and Mapping Class Groups, Ann. Math. Stud., 82, Princeton Univ. Press, Princeton, 1974 | MR
[6] Garoufalidis S., Le T. T. Q., The colored Jones function is $q$-holonomic, , 2003 arXiv: /math.GT/0309214 | MR
[7] Garoufalidis S., Le T. T. Q., Zeilberger D., The quantum MacMahon master theorem, , 2003 arXiv: /math.QA/0303319 | MR
[8] Garoufalidis S., Loebl M., A non-commutative formula for the colored Jones function, , 2005 arXiv: /math.QA/0411505 | MR
[9] Habiro K., “On the quantum $\mathfrak{sl}_2$ invariants of knots and integral homology spheres”, Invariants of Knots and 3-Manifolds., Proc. of the Work-shop (Kyoto, Japan, September 17–21, 2001), Geom. Topol. Monogr., 4, ed. Ohtsuki T. et al., Geometry and Topology Publications, Coventry, 2002, 55–68 | MR | Zbl
[10] Jantzen J. C., “Lecture on Quantum Groups”, Amer. Math. Soc., Grad. Stud. Math., 6, 1995
[11] Jones V., “Hecke algebra representation of braid groups and link polynomials”, Ann. Math., 126 (1987), 335–388 | DOI | MR | Zbl
[12] Kashaev R., “The hyperbolic volume of knots from the quantum dilogarithm”, Modern Phys. Lett. A, 39 (1997), 269–275 | MR | Zbl
[13] Kirby R., Melvin P., “The 3-manifold invariants of Witten and Reshetikhin–Turaev for $\mathrm{msl}(2,\mathbb C)$”, Invent. Math., 105 (1991), 473–545 | DOI | MR | Zbl
[14] Lawrence R., “A universal link invariant using quantum groups”, Differential Geometric Methods in Theoretical Physics (Chester, 1988), World Sci. Publishing, Teaneck, 1989, 55–63 | MR
[15] Le T. T. Q., The colored Jones polynomial and the $A$-polynomial of two-bridge knots, , 2004 arXiv: /math.GT/0407521
[16] Lück W., $L^2$-Invariants: Theory and Applications to Geometry and $K$-Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 44, Springer, Berlin, 2002 | MR | Zbl
[17] Manin Yu., Quantum Group and Non-Commutative Geometry, Université de Montreal, Centre de Recherches Mathématiques, Montreal, 1988 | Zbl
[18] Melvin P. M., Morton H. R., “The coloured Jones function”, Comm. Math. Phys., 169:3 (1995), 501–520 | DOI | MR | Zbl
[19] Murakami H., Murakami J., “The colored Jones polynomials and the simplicial volume of a knot”, Acta Math., 186 (2001), 85–104 | DOI | MR | Zbl
[20] Rozansky L., “The universal $R$-matrix, Burau representation, and the Melvin–Morton expansion of the colored Jones polynomial”, Adv. Math., 134 (1998), 1–31 | DOI | MR | Zbl
[21] Silver D., Williams S., “Mahler measure of Alexander polynomials”, J. London Math. Soc. (2), 69 (2004), 767–782 | DOI | MR | Zbl
[22] Turaev V., Quantum invariants of knots and 3-manifolds, De Gruyter Stud. Math., 18, Walter de Gruyter, Berlin, 1994 | MR | Zbl
[23] Zagier D., “Vassiliev invariants and a strange identity related to the Dedekind eta-function”, Topology, 40 (2001), 945–960 | DOI | MR | Zbl