On the colored Jones polynomial and the Kashaev invariant
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 57-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We express the colored Jones polynomial as the inverse of the quantum determinant of a matrix with entries in the $q$-Weyl algebra of $q$-operators, evaluated at the trivial function (plus simple substitutions). The Kashaev invariant is proved to be equal to another special evaluation of the determinant. We also discuss the similarity between our determinant formula of the Kashaev invariant and the determinant formula of the hyperbolic volume of knot complements, hoping it would lead to a proof of the volume conjecture.
@article{FPM_2005_11_5_a4,
     author = {Huynh Vu and Le Tu Quoc Thang},
     title = {On the colored {Jones} polynomial and the {Kashaev} invariant},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {57--78},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a4/}
}
TY  - JOUR
AU  - Huynh Vu
AU  - Le Tu Quoc Thang
TI  - On the colored Jones polynomial and the Kashaev invariant
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 57
EP  - 78
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a4/
LA  - ru
ID  - FPM_2005_11_5_a4
ER  - 
%0 Journal Article
%A Huynh Vu
%A Le Tu Quoc Thang
%T On the colored Jones polynomial and the Kashaev invariant
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 57-78
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a4/
%G ru
%F FPM_2005_11_5_a4
Huynh Vu; Le Tu Quoc Thang. On the colored Jones polynomial and the Kashaev invariant. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 57-78. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a4/

[1] Kassel K., Kvantovye gruppy, Fazis, M., 1999

[2] Khamfris Dzh., Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003

[3] Bar-Natan D., Garoufalidis S.,, “On the Melvin–Morton–Rozansky conjecture”, Invent. Math., 125:1 (1996), 103–133 | DOI | MR | Zbl

[4] Benedetti R., Petronio C., Lectures on Hyperbolic Geometry, Springer, Berlin, 1992 | MR | Zbl

[5] Birman J., Braids, Links, and Mapping Class Groups, Ann. Math. Stud., 82, Princeton Univ. Press, Princeton, 1974 | MR

[6] Garoufalidis S., Le T. T. Q., The colored Jones function is $q$-holonomic, , 2003 arXiv: /math.GT/0309214 | MR

[7] Garoufalidis S., Le T. T. Q., Zeilberger D., The quantum MacMahon master theorem, , 2003 arXiv: /math.QA/0303319 | MR

[8] Garoufalidis S., Loebl M., A non-commutative formula for the colored Jones function, , 2005 arXiv: /math.QA/0411505 | MR

[9] Habiro K., “On the quantum $\mathfrak{sl}_2$ invariants of knots and integral homology spheres”, Invariants of Knots and 3-Manifolds., Proc. of the Work-shop (Kyoto, Japan, September 17–21, 2001), Geom. Topol. Monogr., 4, ed. Ohtsuki T. et al., Geometry and Topology Publications, Coventry, 2002, 55–68 | MR | Zbl

[10] Jantzen J. C., “Lecture on Quantum Groups”, Amer. Math. Soc., Grad. Stud. Math., 6, 1995

[11] Jones V., “Hecke algebra representation of braid groups and link polynomials”, Ann. Math., 126 (1987), 335–388 | DOI | MR | Zbl

[12] Kashaev R., “The hyperbolic volume of knots from the quantum dilogarithm”, Modern Phys. Lett. A, 39 (1997), 269–275 | MR | Zbl

[13] Kirby R., Melvin P., “The 3-manifold invariants of Witten and Reshetikhin–Turaev for $\mathrm{msl}(2,\mathbb C)$”, Invent. Math., 105 (1991), 473–545 | DOI | MR | Zbl

[14] Lawrence R., “A universal link invariant using quantum groups”, Differential Geometric Methods in Theoretical Physics (Chester, 1988), World Sci. Publishing, Teaneck, 1989, 55–63 | MR

[15] Le T. T. Q., The colored Jones polynomial and the $A$-polynomial of two-bridge knots, , 2004 arXiv: /math.GT/0407521

[16] Lück W., $L^2$-Invariants: Theory and Applications to Geometry and $K$-Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 44, Springer, Berlin, 2002 | MR | Zbl

[17] Manin Yu., Quantum Group and Non-Commutative Geometry, Université de Montreal, Centre de Recherches Mathématiques, Montreal, 1988 | Zbl

[18] Melvin P. M., Morton H. R., “The coloured Jones function”, Comm. Math. Phys., 169:3 (1995), 501–520 | DOI | MR | Zbl

[19] Murakami H., Murakami J., “The colored Jones polynomials and the simplicial volume of a knot”, Acta Math., 186 (2001), 85–104 | DOI | MR | Zbl

[20] Rozansky L., “The universal $R$-matrix, Burau representation, and the Melvin–Morton expansion of the colored Jones polynomial”, Adv. Math., 134 (1998), 1–31 | DOI | MR | Zbl

[21] Silver D., Williams S., “Mahler measure of Alexander polynomials”, J. London Math. Soc. (2), 69 (2004), 767–782 | DOI | MR | Zbl

[22] Turaev V., Quantum invariants of knots and 3-manifolds, De Gruyter Stud. Math., 18, Walter de Gruyter, Berlin, 1994 | MR | Zbl

[23] Zagier D., “Vassiliev invariants and a strange identity related to the Dedekind eta-function”, Topology, 40 (2001), 945–960 | DOI | MR | Zbl