A bound for the topological entropy of homeomorphisms of a~punctured two-dimensional disk
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 47-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider homeomorphisms $f$ of a punctured 2-disk $D^2\setminus P$, where $P$ is a finite set of interior points of $D^2$, which leave the boundary points fixed. Any such homeomorphism induces an automorphism $f_*$ of the fundamental group of $D^2\setminus P$. Moreover, to each homeomorphism $f$, a matrix $B_f(t)$ from $\mathrm{GL}(n,\mathbb Z[t,t^{-1}])$ can be assigned by using the well-known Burau representation. The purpose of this paper is to find a nontrivial lower bound for the topological entropy of $f$. First, we consider the lower bound for the entropy found by R. Bowen by using the growth rate of the induced automorphism $f_*$. Then we analyze the argument of B. Kolev, who obtained a lower bound for the topological entropy by using the spectral radius of the matrix $B_f(t)$, where $t\in\mathbb C$, and slightly improve his result.
@article{FPM_2005_11_5_a3,
     author = {O. N. Biryukov},
     title = {A bound for the topological entropy of homeomorphisms of a~punctured two-dimensional disk},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {47--55},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a3/}
}
TY  - JOUR
AU  - O. N. Biryukov
TI  - A bound for the topological entropy of homeomorphisms of a~punctured two-dimensional disk
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 47
EP  - 55
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a3/
LA  - ru
ID  - FPM_2005_11_5_a3
ER  - 
%0 Journal Article
%A O. N. Biryukov
%T A bound for the topological entropy of homeomorphisms of a~punctured two-dimensional disk
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 47-55
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a3/
%G ru
%F FPM_2005_11_5_a3
O. N. Biryukov. A bound for the topological entropy of homeomorphisms of a~punctured two-dimensional disk. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 47-55. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a3/

[1] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999

[2] Bowen R., “Entropy and the fundamental group”, The Structure of Attractors in Dynamical Systems, Proc. Conf. (North Dakota State Univ., Fargo, N.D., 1977), Lecture Notes in Math., 668, Springer, Berlin, 1978, 21–29 | MR

[3] Kolev B., “Entropie topologique et représentation de Burau”, C. R. Acad. Sci. Paris, Sér. 1, 309:13 (1989), 835–838 | MR | Zbl

[4] Manning A., “Topological entropy and the first homology group”, Dynamical Systems – Warwick 1974, Proc. Sympos. Appl. Topology and Dynamical Systems (Univ. Warwick, Coventry, 1973/1974), Lect. Notes Math., 468, Springer, Berlin, 1975, 185–190 | MR

[5] Turaev V., “Faithful linear representations of the braid groups”, Astérisque, 276, 2002, 389–409 | MR | Zbl