Configuration spaces of $n$~lines in affine $(n+k)$-space
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 33-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the space of configurations of $n$ lines in the affine space of dimension $n+k$. We give a topological description of these spaces in terms of some fiber spaces and describe more specifically some interesting cases.
@article{FPM_2005_11_5_a2,
     author = {M. Boege and L. Montejano},
     title = {Configuration spaces of $n$~lines in affine $(n+k)$-space},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {33--45},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a2/}
}
TY  - JOUR
AU  - M. Boege
AU  - L. Montejano
TI  - Configuration spaces of $n$~lines in affine $(n+k)$-space
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 33
EP  - 45
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a2/
LA  - ru
ID  - FPM_2005_11_5_a2
ER  - 
%0 Journal Article
%A M. Boege
%A L. Montejano
%T Configuration spaces of $n$~lines in affine $(n+k)$-space
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 33-45
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a2/
%G ru
%F FPM_2005_11_5_a2
M. Boege; L. Montejano. Configuration spaces of $n$~lines in affine $(n+k)$-space. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 33-45. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a2/

[1] Arocha J. L., Bracho J., Montejano L., “On configurations of flats. I: Manifolds of points in the projective line”, Discrete Comput. Geom. (to appear) | MR

[2] Arocha J. L., Bracho J., Montejano L., Oliveros D., Strausz R., “Separoids, their category and a Hadwiger type theorem for transversals”, Discrete Comput. Geom., 23 (2002), 377–385 | MR

[3] Bracho J., Montejano L., Oliveros D., “The topology of the space of transversals through the space of configurations”, Topology Appl., 120:1–2 (2002), 93–103 | DOI | MR | Zbl

[4] Gel'fand I. M., Goresky R. M., MacPherson R. D., Serganova V. V., “Combinatorial geometries, convex polyhedra, and Schubert cells”, Adv. Math., 63:3 (1987), 301–316 | DOI | MR

[5] Steenrod N., The Topology of Fibre Bundles, Princeton Univ. Press, Princeton, 1950 | MR