Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2005_11_5_a17, author = {K. Hrbacek}, title = {Some remarks on nonstandard theory of classes}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {233--255}, publisher = {mathdoc}, volume = {11}, number = {5}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a17/} }
K. Hrbacek. Some remarks on nonstandard theory of classes. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 233-255. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a17/
[1] Andreev P. V., Gordon E. I., “An axiomatics for nonstandard set theory, based on von Neumann–Bernays–Gödel theory”, J. Symbolic Logic, 66 (2001), 1321–1341 | DOI | MR | Zbl
[2] Andreev P. V., Hrbacek K., “Standard sets in nonstandard set theory”, J. Symbolic Logic, 69 (2004), 165–182 | DOI | MR | Zbl
[3] Hrbacek K., “Axiomatic foundations for nonstandard analysis”, Fund. Math., 98 (1978), 1–19 ; J. Symbolic Logic, 41 (1976), 285 | MR | Zbl
[4] Hrbacek K., “Nonstandard objects in set theory”, Proc. Conf. “Nonstandard Methods and Applications in Mathematics” (Pisa, 2002)
[5] Hrbacek K., Nonstandard Kelley–Morse set theory, Preprint, 2004 | MR
[6] Jech T., Set Theory, Academic Press, New York, 1978 | MR | Zbl
[7] Kanovei V., On Kelley–Morse type nonstandard theories, Preprint, 2004
[8] Kanovei V., Reeken M., Nonstandard Analysis, Axiomatically, Springer, Berlin, 2004 | MR | Zbl
[9] Nelson E., “Internal set theory: A new approach to nonstandard analysis”, Bull. Amer. Math. Soc., 83 (1977), 1165–1198 | DOI | MR | Zbl