Semifree actions on spheres
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 197-207 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article presents main results concerning smooth semifree actions of finite groups on spheres. One shows that for every holomorphic function having an isolated singularity, there exists a smooth semifree action on a (possibly homotopic) sphere where the fixed point set is the boundary for the singularity of the given function.
@article{FPM_2005_11_5_a14,
     author = {I. V. Savel'ev},
     title = {Semifree actions on spheres},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {197--207},
     year = {2005},
     volume = {11},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a14/}
}
TY  - JOUR
AU  - I. V. Savel'ev
TI  - Semifree actions on spheres
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 197
EP  - 207
VL  - 11
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a14/
LA  - ru
ID  - FPM_2005_11_5_a14
ER  - 
%0 Journal Article
%A I. V. Savel'ev
%T Semifree actions on spheres
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 197-207
%V 11
%N 5
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a14/
%G ru
%F FPM_2005_11_5_a14
I. V. Savel'ev. Semifree actions on spheres. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 197-207. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a14/

[1] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | MR | Zbl

[2] Volf Dzh. A., Prostranstva postoyannoi krivizny, Nauka, M., 1982 | MR

[3] Konner P., Floid E., Gladkie periodicheskie otobrazheniya, Mir, M., 1969

[4] Leng S., Algebra, Mir, M., 1969

[5] Mamford D., “Topologiya normalnykh osobennostei algebraicheskoi giperpoverkhnosti i kriterii prostoty”, Matematika, 10:6 (1966), 3–24 | MR

[6] Milnor Dzh., Osobye tochki kompleksnykh giperpoverkhnostei, Mir, M., 1971 | MR | Zbl

[7] Savelev I. V., “Razvetvlennye nakrytiya nad mnogoobraziyami” (to appear)

[8] Bochnak J., Kucharz W., “Local algebraicity of analytic sets”, J. Reine Angew. Math., 352 (1984), 1–14 | MR | Zbl

[9] Giffen C. H., “The generalized Smith conjecture”, Amer. J. Math., 88:1 (1966), 187–198 | DOI | MR | Zbl

[10] Grothendieck A., On Monodromy Theory. CGA, IHES, 1968

[11] Sebastiani M., Thom R., “Un résultat sur la monodromie”, Invent. Math., 13 (1971), 90–96 | DOI | MR | Zbl

[12] The Smith Conjecture, Papers Presented at the Symposium Held at Columbia University (New York, 1979), Pure Appl. Math., 112, eds. J. Morgan, H. Bass, Academic Press, Orlando, 1984 | MR