Semifree actions on spheres
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 197-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article presents main results concerning smooth semifree actions of finite groups on spheres. One shows that for every holomorphic function having an isolated singularity, there exists a smooth semifree action on a (possibly homotopic) sphere where the fixed point set is the boundary for the singularity of the given function.
@article{FPM_2005_11_5_a14,
     author = {I. V. Savel'ev},
     title = {Semifree actions on spheres},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {197--207},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a14/}
}
TY  - JOUR
AU  - I. V. Savel'ev
TI  - Semifree actions on spheres
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 197
EP  - 207
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a14/
LA  - ru
ID  - FPM_2005_11_5_a14
ER  - 
%0 Journal Article
%A I. V. Savel'ev
%T Semifree actions on spheres
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 197-207
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a14/
%G ru
%F FPM_2005_11_5_a14
I. V. Savel'ev. Semifree actions on spheres. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 197-207. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a14/

[1] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | MR | Zbl

[2] Volf Dzh. A., Prostranstva postoyannoi krivizny, Nauka, M., 1982 | MR

[3] Konner P., Floid E., Gladkie periodicheskie otobrazheniya, Mir, M., 1969

[4] Leng S., Algebra, Mir, M., 1969

[5] Mamford D., “Topologiya normalnykh osobennostei algebraicheskoi giperpoverkhnosti i kriterii prostoty”, Matematika, 10:6 (1966), 3–24 | MR

[6] Milnor Dzh., Osobye tochki kompleksnykh giperpoverkhnostei, Mir, M., 1971 | MR | Zbl

[7] Savelev I. V., “Razvetvlennye nakrytiya nad mnogoobraziyami” (to appear)

[8] Bochnak J., Kucharz W., “Local algebraicity of analytic sets”, J. Reine Angew. Math., 352 (1984), 1–14 | MR | Zbl

[9] Giffen C. H., “The generalized Smith conjecture”, Amer. J. Math., 88:1 (1966), 187–198 | DOI | MR | Zbl

[10] Grothendieck A., On Monodromy Theory. CGA, IHES, 1968

[11] Sebastiani M., Thom R., “Un résultat sur la monodromie”, Invent. Math., 13 (1971), 90–96 | DOI | MR | Zbl

[12] The Smith Conjecture, Papers Presented at the Symposium Held at Columbia University (New York, 1979), Pure Appl. Math., 112, eds. J. Morgan, H. Bass, Academic Press, Orlando, 1984 | MR