New topological models for Banach--Mazur compacta
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 19-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions are given for an action of the orthogonal group $\mathrm{O}(n)$ on the Hilbert cube $Q$ in order that the corresponding orbit space $Q/\mathrm{O}(n)$ be homeomorphic to the Banach–Mazur compactum $\mathrm{BM}(n)$. This result is applied to obtain simple topological models for $\mathrm{BM}(2)$.
@article{FPM_2005_11_5_a1,
     author = {S. A. Antonyan},
     title = {New topological models for {Banach--Mazur} compacta},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {19--31},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a1/}
}
TY  - JOUR
AU  - S. A. Antonyan
TI  - New topological models for Banach--Mazur compacta
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 19
EP  - 31
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a1/
LA  - ru
ID  - FPM_2005_11_5_a1
ER  - 
%0 Journal Article
%A S. A. Antonyan
%T New topological models for Banach--Mazur compacta
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 19-31
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a1/
%G ru
%F FPM_2005_11_5_a1
S. A. Antonyan. New topological models for Banach--Mazur compacta. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 19-31. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a1/

[1] Antonyan S. A., “Retrakty v kategoriyakh $G$-prostranstv”, Izvestiya AN Armyanskoi SSR. Ser. mat., 15 (1980), 365–378 | MR | Zbl

[2] Antonyan S. A., “Retraktsionnye svoistva prostranstva orbit”, Mat. sbornik, 137 (1988), 300–318 | MR | Zbl

[3] Abels H., “Parallelizability of proper actions, global $K$-slices and maximal compact subgroups”, Math. Ann., 212 (1974), 1–19 | DOI | MR | Zbl

[4] Antonyan S. A., The topology of the Banach–Mazur compactum, Preprint. Publicaciones Preliminares del Instituto de Matemáticas, Universidad Nacional Autónoma de México, No 558, 1997 | MR

[5] Antonyan S. A., “The Banach–Mazur compacta are absolute retracts”, Bull. Acad. Polon. Sci. Ser. Sci. Math., 46 (1998), 113–119 | MR | Zbl

[6] Antonyan S. A., “The topology of the Banach–Mazur compactum”, Fund. Math., 166:3 (2000), 209–232 | MR | Zbl

[7] Antonyan S. A., “West's problem on equivariant hyperspaces and Banach–Mazur compacta”, Trans. Amer. Math. Soc., 355:8 (2003), 3379–3404 | DOI | MR | Zbl

[8] Banach S., Théorie des Opérations Linéaires, Monografje Matematyczne, Warszawa, 1932

[9] Bredon G., Introduction to compact transformation groups, Academic Press, New York, 1972 | MR | Zbl

[10] Chapman T. A., Lectures on Hilbert cube manifolds, CBMS Regional Conference Series in Math., 28, Amer. Math. Soc., Providence, 1975 | MR

[11] Fabel P., “The Banach–Mazur compactum $Q(2)$ is an absolute retract”, Topology and Applications, Int. Topological Conf. dedicated to P. S. Alexandroff's 100th birthday (Moscow, May 27–31, 1996), Moscow, 1996, 57

[12] James I. M., Segal G. B., “On equivariant homotopy theory”, Topology, Proc. Symp. (Siegen 1979), Lect. Notes Math., 788, Springer, 1980, 316–330 | MR

[13] John F., “Extremum problems with inequalities as subsidiary conditions”, John F. Collected Papers, V. 2, ed. J. Moser, Birkhäuser, 1985, 543–560

[14] Michael E., “Closed retracts and perfect maps”, Topology Appl., 121 (2002), 451–468 | DOI | MR | Zbl

[15] Van Mill J., Infinite-Dimensional Topology. Prerequisites and Introduction, North-Holland, Amsterdam, 1989 | MR

[16] Palais R., The Classification of $G$-spaces, Memoirs Amer. Math. Soc., 36, Amer. Math. Soc., Providence, 1960 | MR | Zbl

[17] West J. E., “Infinite products which are Hilbert cubes”, Trans. Amer. Math. Soc., 150 (1970), 1–25 | DOI | MR | Zbl

[18] West J. E., “Open problems in infinite-dimensional topology”, Open Problems in Topology, eds. J. van Mill, G. Reed, North-Holland, Amsterdam, 1990, 524–586 | MR

[19] Wong R. Y. T., Noncompact Hilbert cube manifolds, Preprint