Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2005_11_5_a0, author = {S. V. Alenov}, title = {Arrow-diagram formulas for fourth-order invariants of knots}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {3--17}, publisher = {mathdoc}, volume = {11}, number = {5}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a0/} }
S. V. Alenov. Arrow-diagram formulas for fourth-order invariants of knots. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 3-17. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a0/
[1] Allënov S. V., Leksin V. P., “O diagrammnykh formulakh invariantov uzlov”, Tr. MIRAN im. V. A. Steklova, 252, 2006, 10–17 | MR
[2] Vasilev V. A., Topologiya dopolnenii k diskriminantam, Fazis, M., 1997 | MR
[3] Matematicheskaya entsiklopediya, Sovetskaya entsiklopediya, M., 1985
[4] Tyurina S. D., “Diagrammnye formuly tipa Viro–Polyaka dlya invariantov konechnogo poryadka”, Uspekhi mat. nauk, 54:3 (1999), 187–188 | MR | Zbl
[5] Bar-Natan D., “On the Vassiliev knot invariants”, Topology, 34 (1995), 423–475 | DOI | MR
[6] Lannes J., “Sur les invariants de Vassiliev de degreé inferieur ou égal à 3”, Enseign. Math., 39 (1993), 295–316 | MR | Zbl
[7] Östlund O.-P., A combinatorial approach to Vassiliev knot invariants, Preprint Uppsala University, 1997 | Zbl
[8] Polyak M., Viro O., “Gauss diagram formulas for Vassiliev invariants”, Int. Math. Res. Notices, 11 (1994), 445–453 | DOI | MR | Zbl
[9] Reidemeister K., Knot Theory, Chelsea Publ., New York, 1948
[10] Vassiliev V. A., “Combinatorial formulas for cohomology of knot spaces”, Moscow Math. J., 1:1 (2001), 91–123 | MR | Zbl