Arrow-diagram formulas for fourth-order invariants of knots
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study explicit arrow-diagram formulas for fourth-order Vassiliev invariants of knots announced by several authors. We show that, in fact, these formulas do not determine any knot invariants.
@article{FPM_2005_11_5_a0,
     author = {S. V. Alenov},
     title = {Arrow-diagram formulas for fourth-order invariants of knots},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a0/}
}
TY  - JOUR
AU  - S. V. Alenov
TI  - Arrow-diagram formulas for fourth-order invariants of knots
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 3
EP  - 17
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a0/
LA  - ru
ID  - FPM_2005_11_5_a0
ER  - 
%0 Journal Article
%A S. V. Alenov
%T Arrow-diagram formulas for fourth-order invariants of knots
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 3-17
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a0/
%G ru
%F FPM_2005_11_5_a0
S. V. Alenov. Arrow-diagram formulas for fourth-order invariants of knots. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 3-17. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a0/

[1] Allënov S. V., Leksin V. P., “O diagrammnykh formulakh invariantov uzlov”, Tr. MIRAN im. V. A. Steklova, 252, 2006, 10–17 | MR

[2] Vasilev V. A., Topologiya dopolnenii k diskriminantam, Fazis, M., 1997 | MR

[3] Matematicheskaya entsiklopediya, Sovetskaya entsiklopediya, M., 1985

[4] Tyurina S. D., “Diagrammnye formuly tipa Viro–Polyaka dlya invariantov konechnogo poryadka”, Uspekhi mat. nauk, 54:3 (1999), 187–188 | MR | Zbl

[5] Bar-Natan D., “On the Vassiliev knot invariants”, Topology, 34 (1995), 423–475 | DOI | MR

[6] Lannes J., “Sur les invariants de Vassiliev de degreé inferieur ou égal à 3”, Enseign. Math., 39 (1993), 295–316 | MR | Zbl

[7] Östlund O.-P., A combinatorial approach to Vassiliev knot invariants, Preprint Uppsala University, 1997 | Zbl

[8] Polyak M., Viro O., “Gauss diagram formulas for Vassiliev invariants”, Int. Math. Res. Notices, 11 (1994), 445–453 | DOI | MR | Zbl

[9] Reidemeister K., Knot Theory, Chelsea Publ., New York, 1948

[10] Vassiliev V. A., “Combinatorial formulas for cohomology of knot spaces”, Moscow Math. J., 1:1 (2001), 91–123 | MR | Zbl