Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2005_11_4_a6, author = {R. Campoamor-Stursberg}, title = {Solvable {Lie} algebras, products by generators, and some of its applications}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {85--94}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a6/} }
TY - JOUR AU - R. Campoamor-Stursberg TI - Solvable Lie algebras, products by generators, and some of its applications JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2005 SP - 85 EP - 94 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a6/ LA - ru ID - FPM_2005_11_4_a6 ER -
R. Campoamor-Stursberg. Solvable Lie algebras, products by generators, and some of its applications. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 85-94. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a6/
[1] Berzin D. V., “Invarianty koprisoedinënnogo predstavleniya dlya algebr Li nekotorogo spetsialnogo vida”, Uspekhi mat. nauk, 51:1 (1996), 141–143 | MR
[2] Mubarakzyanov G. M., “O razreshimykh algebrakh Li”, Izv. vyssh. uchebn. zaved. Matematika, 1963, no. 1, 114–123 | MR | Zbl
[3] Perelomov A. M., Integriruemye sistemy klassicheskoi mekhaniki i algebry Li, RKhD, M., 2002
[4] Trofimov V. V., Vvedenie v geometriyu mnogoobrazii s simmetriyami, Izd-vo Mosk. un-ta, M., 1989 | MR
[5] Ancochea J. M., Campoamor-Stursberg R., “Symplectic forms and products by generators”, Comm. Algebra, 30 (2002), 4235–4249 | DOI | MR | Zbl
[6] Ancochea J. M., Campoamor-Stursberg R., “Two step solvable Lie algebras and weight graphs”, Transform. Groups, 7 (2002), 307–320 | DOI | MR | Zbl
[7] Ancochea J. M., Campoamor-Stursberg R., “Characteristically nilpotent Lie algebras of type $\mathfrak{g}_{1}\underline{\times}\mathfrak{g}_{2}$”, Forum Math., 15 (2003), 299–307 | DOI | MR | Zbl
[8] Andrada A., Barberis M. L., Dotti I., Ovando G., Product structures on four dimensional solvable Lie algebras, , 2004 arXiv: /math.RA/0402234 | MR
[9] Campoamor-Stursberg R., “A graph theoretical determination of solvable complete rigid Lie algebras”, Linear Algebra Appl., 372 (2003), 53–66 | DOI | MR | Zbl
[10] Campoamor-Stursberg R., “An alternative interpretation of the Beltrametti–Blasi formula by means of differential forms”, Phys. Lett. A, 327 (2004), 138–145 | DOI | MR | Zbl
[11] Turkowski P., “Solvable Lie algebras of dimension six”, J. Math. Phys., 31 (1990), 1344–1350 | DOI | MR | Zbl