Geometric topology of generalized $3$-manifolds
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 71-84
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we describe the history and the present status of one of the main classical problems in low-dimensional geometric topology — the recognition of topological 3-manifolds in the class of all generalized 3-manifolds (i.e., ANR homology 3-manifolds). This problem naturally splits into the cell-like resolution problem for 3-manifolds by means of homology 3-manifolds and the general-position problem for topological 3-manifolds. We have also included some open problems.
@article{FPM_2005_11_4_a5,
author = {A. Cavicchioli and D. Repov\v{s} and T. Thickstun},
title = {Geometric topology of generalized $3$-manifolds},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {71--84},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a5/}
}
TY - JOUR AU - A. Cavicchioli AU - D. Repovš AU - T. Thickstun TI - Geometric topology of generalized $3$-manifolds JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2005 SP - 71 EP - 84 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a5/ LA - ru ID - FPM_2005_11_4_a5 ER -
A. Cavicchioli; D. Repovš; T. Thickstun. Geometric topology of generalized $3$-manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 71-84. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a5/