Geometric topology of generalized $3$-manifolds
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 71-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we describe the history and the present status of one of the main classical problems in low-dimensional geometric topology — the recognition of topological 3-manifolds in the class of all generalized 3-manifolds (i.e., ANR homology 3-manifolds). This problem naturally splits into the cell-like resolution problem for 3-manifolds by means of homology 3-manifolds and the general-position problem for topological 3-manifolds. We have also included some open problems.
@article{FPM_2005_11_4_a5,
     author = {A. Cavicchioli and D. Repov\v{s} and T. Thickstun},
     title = {Geometric topology of generalized $3$-manifolds},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {71--84},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a5/}
}
TY  - JOUR
AU  - A. Cavicchioli
AU  - D. Repovš
AU  - T. Thickstun
TI  - Geometric topology of generalized $3$-manifolds
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 71
EP  - 84
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a5/
LA  - ru
ID  - FPM_2005_11_4_a5
ER  - 
%0 Journal Article
%A A. Cavicchioli
%A D. Repovš
%A T. Thickstun
%T Geometric topology of generalized $3$-manifolds
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 71-84
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a5/
%G ru
%F FPM_2005_11_4_a5
A. Cavicchioli; D. Repovš; T. Thickstun. Geometric topology of generalized $3$-manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 71-84. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a5/

[1] Bing R. H., “A decomposition of $E^{3}$ into points and tame arcs such that the decomposition space is topologically different from $E^{3}$”, Ann. of Math. (2), 65 (1957), 484–500 | DOI | MR | Zbl

[2] Brahm M. V., “Approximating maps of $2$-manifolds with zero-dimensional nondegeneracy sets”, Topology Appl., 45 (1992), 25–38 | DOI | MR | Zbl

[3] Brin M. G., Doctoral dissertation, Univ. of Wisonsin, Madison, 1977

[4] Brin M. G., “Generalized $3$-manifolds whose non-manifold set has neighborhoods bounded by tori”, Trans. Amer. Math. Soc., 264 (1981), 539–555 | DOI | MR

[5] Brin M. G., McMillan D. R., Jr., “Generalized three-manifolds with zero-dimensional non-manifold set”, Pacific J. Math., 97 (1981), 29–58 | MR | Zbl

[6] Brown E. M., Brown M. S., Feustel C. D., “On properly embedding planes in $3$-manifolds”, Proc. Amer. Math. Soc., 55 (1976), 461–464 | DOI | MR | Zbl

[7] Bryant J., Ferry S., Mio W., Weinberger S., “Topology of homology manifolds”, Ann. of Math. (2), 143 (1996), 435–467 | DOI | MR | Zbl

[8] Bryant J. L., Lacher R. C., “Resolving acyclic images of three-manifolds”, Math. Proc. Cambridge Philos. Soc., 88 (1980), 311–319 | DOI | MR | Zbl

[9] Cannon J. W., “The recognition problem: what is a topological manifold?”, Bull. Amer. Math. Soc., 84 (1978), 832–866 | DOI | MR | Zbl

[10] Cavicchioli A., “Imbeddings of polyhedra in $3$-manifolds”, Ann. Mat. Pura Appl., 162 (1992), 157–177 | DOI | MR | Zbl

[11] Cavicchioli A., Hegenbarth F., Repovš D., “On the construction of $4k$-dimensional generalized manifolds”, Proc. School ICTP “High-Dimensional Manifold Topology”, v. 2 (Trieste, Italy, 21 May–8 June 2001), eds. F. T. Farrell, W. Luck, 2003, 103–124 | MR | Zbl

[12] Cavicchioli A., Hegenbarth F., Repovš D., “Topology of Cell-like Maps and Homology Manifolds” (to appear)

[13] Cavicchioli A., Repovš D., “Peripheral acyclicity and homology manifolds”, Ann. Mat. Pura Appl., 172 (1997), 5–24 | DOI | MR | Zbl

[14] Daverman R. J., Repovš D., “A new $3$-dimensional shrinking theorem”, Trans. Amer. Math. Soc., 315 (1989), 219–230 | DOI | MR | Zbl

[15] Daverman R. J., Repovš D., “General position properties which characterize $3$-manifolds”, Can. J. Math., 44 (1992), 234–251 | DOI | MR | Zbl

[16] Daverman R. J., Row W. H., “Cell-like $0$-dimensional decompositions of $S^{3}$ are $4$-manifold factors”, Trans. Amer. Math. Soc., 254 (1979), 217–236 | DOI | MR | Zbl

[17] Daverman R. J., Thickstun T. L., “The $3$-manifold recognition problem”, Trans. Amer. Math. Soc. (to appear) | MR

[18] Edwards R. D., Approximating certain cell–like maps by homeomorphisms, Manuscript, UCLA, Los Angeles, 1977

[19] Hempel J., $3$-Manifolds, Princeton Univ. Press, Princeton, 1986 | MR

[20] Lambert H. W., Sher R. B., “Pointlike $0$-dimensional decompositions of $S^{3}$”, Pacific J. Math., 24 (1968), 511–518 | MR | Zbl

[21] Nicholson V. A., “$1$-FLG complexes are tame in $3$-manifolds”, General Topology Appl., 2 (1972), 277–285 | DOI | MR | Zbl

[22] Quinn F. S., “An obstruction to the resolution of homology manifolds”, Michigan Math. J., 34 (1987), 285–291 | DOI | MR | Zbl

[23] Repovš D., “Recognition problem for manifolds”, Geometric and Algebraic Topology, Banach Centre Publ., 18, eds. J. Krasinkiewicz, S. Spiez, H. Toruńczyk, PWN, Warsaw, 1986, 77–108 | MR

[24] Repovš D., Lacher R. C., “A disjoint disks property for $3$-manifolds”, Topology Appl., 16 (1983), 161–170 | DOI | MR | Zbl

[25] Thickstun T. L., “An extension of the loop theorem and resolutions of generalized $3$-manifolds with $0$-dimensional singular set”, Invent. Math., 78 (1984), 161–222 | DOI | MR | Zbl

[26] Thickstun T. L., “Strongly acyclic maps and homology $3$-manifolds with $0$-dimensional singular set”, Proc. London Math. Soc. (3), 55 (1987), 378–432 | MR | Zbl

[27] Thickstun T. L., “Resolutions of generalized $3$-manifolds whose singular sets have general position dimension one”, Topology Appl., 138 (2004), 61–95 | DOI | MR | Zbl