Geometric topology of generalized $3$-manifolds
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 71-84

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we describe the history and the present status of one of the main classical problems in low-dimensional geometric topology — the recognition of topological 3-manifolds in the class of all generalized 3-manifolds (i.e., ANR homology 3-manifolds). This problem naturally splits into the cell-like resolution problem for 3-manifolds by means of homology 3-manifolds and the general-position problem for topological 3-manifolds. We have also included some open problems.
@article{FPM_2005_11_4_a5,
     author = {A. Cavicchioli and D. Repov\v{s} and T. Thickstun},
     title = {Geometric topology of generalized $3$-manifolds},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {71--84},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a5/}
}
TY  - JOUR
AU  - A. Cavicchioli
AU  - D. Repovš
AU  - T. Thickstun
TI  - Geometric topology of generalized $3$-manifolds
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 71
EP  - 84
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a5/
LA  - ru
ID  - FPM_2005_11_4_a5
ER  - 
%0 Journal Article
%A A. Cavicchioli
%A D. Repovš
%A T. Thickstun
%T Geometric topology of generalized $3$-manifolds
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 71-84
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a5/
%G ru
%F FPM_2005_11_4_a5
A. Cavicchioli; D. Repovš; T. Thickstun. Geometric topology of generalized $3$-manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 71-84. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a5/