On the two-point boundary-value problem for equations of geodesics
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 65-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

For equations of “geodesic spray” type with continuous coefficients on a complete Riemannian manifold, some interrelations between certain geometric characteristics, the distance between points, and the norm of right-hand side are found that guarantee solvability of the boundary-value problem.
@article{FPM_2005_11_4_a4,
     author = {Yu. E. Gliklikh and P. S. Zykov},
     title = {On the two-point boundary-value problem for equations of geodesics},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {65--70},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a4/}
}
TY  - JOUR
AU  - Yu. E. Gliklikh
AU  - P. S. Zykov
TI  - On the two-point boundary-value problem for equations of geodesics
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 65
EP  - 70
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a4/
LA  - ru
ID  - FPM_2005_11_4_a4
ER  - 
%0 Journal Article
%A Yu. E. Gliklikh
%A P. S. Zykov
%T On the two-point boundary-value problem for equations of geodesics
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 65-70
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a4/
%G ru
%F FPM_2005_11_4_a4
Yu. E. Gliklikh; P. S. Zykov. On the two-point boundary-value problem for equations of geodesics. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 65-70. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a4/

[1] Bishop R., Krittenden R., Geometriya mnogoobrazii, Mir, M., 1967 | MR | Zbl

[2] Gliklikh Yu. E., Analiz na rimanovykh mnogoobraziyakh i zadachi matematicheskoi fiziki, Izd-vo VGU, Voronezh, 1989 | MR | Zbl

[3] Gromol D., Klingenberg V., Meier V., Rimanova geometriya v tselom, Mir, M., 1971

[4] Kobayasi Sh., Nomitszu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981

[5] Bates L., “You can't get there from here”, Differential Geom. Appl., 8 (1998), 273–274 | DOI | MR | Zbl

[6] Ginzburg V. L., “Accessible points and closed trajectories of mechanical systems”, in book: Gliklikh Yu. E., Global Analysis in Mathematical Physics. Geometric and Stochastic Methods, Springer, New York, 1997, 192–201

[7] Gliklikh Yu. E., Global Analysis in Mathematical Physics. Geometric and Stochastic Methods, Springer, New York, 1997 | MR | Zbl