On the two-point boundary-value problem for equations of geodesics
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 65-70
Voir la notice de l'article provenant de la source Math-Net.Ru
For equations of “geodesic spray” type with continuous coefficients on a complete Riemannian manifold, some interrelations between certain geometric characteristics, the distance between points, and the norm of right-hand side are found that guarantee solvability of the boundary-value problem.
@article{FPM_2005_11_4_a4,
author = {Yu. E. Gliklikh and P. S. Zykov},
title = {On the two-point boundary-value problem for equations of geodesics},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {65--70},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a4/}
}
TY - JOUR AU - Yu. E. Gliklikh AU - P. S. Zykov TI - On the two-point boundary-value problem for equations of geodesics JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2005 SP - 65 EP - 70 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a4/ LA - ru ID - FPM_2005_11_4_a4 ER -
Yu. E. Gliklikh; P. S. Zykov. On the two-point boundary-value problem for equations of geodesics. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 65-70. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a4/