On multivalued topologies on $L$-powersets of multivalued sets
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 237-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given an $M$-valued equality $E\colon X\times X\to M$ on a set $X$, we extend it to the $M$-valued equality $\mathcal E\colon L^X\times L^X\to M$ on the $L$-powerset $L^X$ of $X$, where $L$ is a complete sublattice of a GL-monoid $M$. As a result, we come to a category $\mathbf{SET}(M, L)$ whose objects are quadruples $(X,E,L^X,\mathcal E)$. This category serves as a ground category for the category $L\text{-}\mathbf{TOP}(M)$ of $(L,M)$-valued topological spaces and some of its subcategories, which are the main subject of this paper. In particular, as special cases, we obtain here Chang–Goguen, Lowen, Kubiak–Šostak, and some other known categories related to fuzzy topology.
@article{FPM_2005_11_4_a18,
     author = {A. P. Shostak},
     title = {On multivalued topologies on $L$-powersets of multivalued sets},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {237--247},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a18/}
}
TY  - JOUR
AU  - A. P. Shostak
TI  - On multivalued topologies on $L$-powersets of multivalued sets
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 237
EP  - 247
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a18/
LA  - ru
ID  - FPM_2005_11_4_a18
ER  - 
%0 Journal Article
%A A. P. Shostak
%T On multivalued topologies on $L$-powersets of multivalued sets
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 237-247
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a18/
%G ru
%F FPM_2005_11_4_a18
A. P. Shostak. On multivalued topologies on $L$-powersets of multivalued sets. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 237-247. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a18/

[1] Shostak A. P., “Dva desyatiletiya nechetkoi topologii: osnovnye idei, ponyatiya i rezultaty”, Uspekhi mat. nauk, 44:6 (1989), 99–147 | MR | Zbl

[2] Höhle U., “$M$-valued sets and sheaves over integral commutative cl-monoids”, Applications of Category Theory to Fuzzy Subsets, eds. S. E. Rodabaugh, E. P. Klement, U. Höhle, Kluwer, Dordrecht, 1992, 33–72 | MR

[3] Höhle U., Many Valued Topology and Its Applications, Kluwer, Dordrecht, 2001 | MR | Zbl

[4] Höhle U., Šostak A., “Axiomatic foundations of fixed-basis fuzzy topologies”, Mathematics of Fuzzy Sets. Logic, Topology and Measure Theory, Chapter 3, Handbook Fuzzy Sets Series, 3, eds. U. Höhle, S. E. Rodabaugh, Kluwer, Dordrecht, 1999, 123–271 | MR

[5] Kubiak T., Šostak A., “A fuzzification of the category of $M$-valued $L$-topological spaces”, Appl. General Topology, 5:2 (2004), 137–154 | MR | Zbl

[6] Rodabaugh S. E., “Powerset operator foundations for poslat fuzzy set theories and topologies”, Mathematics of Fuzzy Sets. Logic, Topology and Measure Theory, Chapter 2, Handbook Fuzzy Sets Series, 3, eds. U. Höhle, S. E. Rodabaugh, Kluwer, Dordrecht, 1999, 91–116 | MR | Zbl