The algorithm of finding planar surfaces in three-manifolds
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 197-202.

Voir la notice de l'article provenant de la source Math-Net.Ru

By a slope in the boundary $\partial M$ of a 3-manifold, we mean the isotopy class $\alpha$ of a finite set of disjoint simple closed curves in $\partial M$ which are nontrivial and pairwise nonparallel. In this paper, we construct an algorithm to decide whether or not a given orientable 3-manifold $M$ contains an essential planar surface whose boundary has a given slope $\alpha$.
@article{FPM_2005_11_4_a14,
     author = {E. A. Sbrodova},
     title = {The algorithm of finding planar surfaces in three-manifolds},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {197--202},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a14/}
}
TY  - JOUR
AU  - E. A. Sbrodova
TI  - The algorithm of finding planar surfaces in three-manifolds
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 197
EP  - 202
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a14/
LA  - ru
ID  - FPM_2005_11_4_a14
ER  - 
%0 Journal Article
%A E. A. Sbrodova
%T The algorithm of finding planar surfaces in three-manifolds
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 197-202
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a14/
%G ru
%F FPM_2005_11_4_a14
E. A. Sbrodova. The algorithm of finding planar surfaces in three-manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 197-202. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a14/

[1] Haken W., “Theorie der Normalflachen”, Acta Math., 105 (1961), 245–375 | DOI | MR | Zbl

[2] Jaco W., Sedgwick E., Decision problems in the space of Dehn fillings, , 1998 arXiv: /math.GT/9811031 | MR

[3] Matveev S., Algoritmic Topology and Classification of $3$-Manifolds, Springer, Berlin, 2003 | MR