The algorithm of finding planar surfaces in three-manifolds
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 197-202
Voir la notice de l'article provenant de la source Math-Net.Ru
By a slope in the boundary $\partial M$ of a 3-manifold, we mean the isotopy class $\alpha$ of a finite set of disjoint simple closed curves in $\partial M$ which are nontrivial and pairwise nonparallel. In this paper, we construct an algorithm to decide whether or not a given orientable 3-manifold $M$ contains an essential planar surface whose boundary has a given slope $\alpha$.
@article{FPM_2005_11_4_a14,
author = {E. A. Sbrodova},
title = {The algorithm of finding planar surfaces in three-manifolds},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {197--202},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a14/}
}
E. A. Sbrodova. The algorithm of finding planar surfaces in three-manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 197-202. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a14/