Degree-one maps of Seifert manifolds into the Poincar\'e homology sphere
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 173-183
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to the Legrand–Wang–Zieschang problem of minimal (in the sense of degree-one maps) Seifert manifolds. The main result is that the set of all possible map degrees from a Seifert manifold to a manifold with a finite fundamental group whose base is a sphere or a torus depends only on residues of parameters of exceptional fibers of the Seifert manifold. The minimality of some Seifert manifolds is proved by using this theorem.
@article{FPM_2005_11_4_a12,
author = {A. A. Perfil'ev},
title = {Degree-one maps of {Seifert} manifolds into the {Poincar\'e} homology sphere},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {173--183},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a12/}
}
TY - JOUR AU - A. A. Perfil'ev TI - Degree-one maps of Seifert manifolds into the Poincar\'e homology sphere JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2005 SP - 173 EP - 183 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a12/ LA - ru ID - FPM_2005_11_4_a12 ER -
A. A. Perfil'ev. Degree-one maps of Seifert manifolds into the Poincar\'e homology sphere. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 173-183. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a12/