Ring geometries and their lattices
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 127-137

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a notion of a generalized geometrical lattice, allowing us to obtain an analog of matroid theory for the case of arbitrary principal ideal rings.
@article{FPM_2005_11_3_a8,
     author = {A. A. Lashkhi},
     title = {Ring geometries and their lattices},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {127--137},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a8/}
}
TY  - JOUR
AU  - A. A. Lashkhi
TI  - Ring geometries and their lattices
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 127
EP  - 137
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a8/
LA  - ru
ID  - FPM_2005_11_3_a8
ER  - 
%0 Journal Article
%A A. A. Lashkhi
%T Ring geometries and their lattices
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 127-137
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a8/
%G ru
%F FPM_2005_11_3_a8
A. A. Lashkhi. Ring geometries and their lattices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 127-137. http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a8/